GA-MA780G-UD3H

AM2+/AM2ソケットマザーボード AMD Phenom™ FX processor/AMD Phenom™ X4 processor/ AMD Phenom™ X3 processor/AMD Athlon™ X2 processor/ AMD Athlon™ processor/AMD Sempron™ X2 processor/ AMD Sempron™ processor

ユーザーズ マニュアル

改版 1001 12MJ-MA78UD3-1001R

Declaration of Conformity We, Manufacturer/Importer

G.B.T. Technology Trading GMbH Bullenkoppel 16, 22047 Hamburg, Germany

declare that the product viton of the apparatus, system, installation to which it refers)

Motherboard

GA-MA780G-UD3H
is in conformity with
(reference to the specification under which conformity is declared)

	□ EN 60335	□ EN 60065		⊠ CE marking	□ DIN VDE 0855 0 □ part 10 □ part 12	⊠ EN 55022	□ EN 55020	□ EN 55015		□ EN 55014-1	□ EN 55013		□ EN 55011	
Manufac	Safety of household and similar electrical appliances	Safety requirements for mains operated electronic and related apparatus for household and similar general use	The manufacturer also declares the conformity of above mentioned product with the actual required safety standards in accordance with LVD 2006/95/EC		Cabled distribution systems; Equipment for receiving and/or distribution from sound and television signals	Limits and methods of measurement of radio disturbance characteristics of information technology equipment	Immunity from radio interference of broadcast receivers and associated equipment	Limits and methods of measurement of radio disturbance characteristics of fluorescent lamps and luminaries	portable tools and similar electrical apparatus	Limits and methods of measurement of radio disturbance characteristics of household electrical appliances	Limits and methods of measurement of radio disturbance characteristics of broadcast receivers and associated equipment	industrial, scientific and medical (ISM) high frequency equipment	Limits and methods of measurement	in accordance with 2
Manufacturer/Importer	□ EN 50091-1	⊠ EN 60950	conformity of above dards in accordance	(EC or	1		□ EN 50091-2	□ EN 55014-2	□ EN 50082-2	□ EN 50082-1	⊠ EN 55024	⊠ EN 61000-3-3	⊠ EN 61000-3-2	in accordance with 2004/108/EC EMC Directive
Signature: Timmy Huang	General and Safety requirements for uninterruptible power systems (UPS)	Safety for information technology equipment including electrical business equipment	e mentioned product with LVD 2006/95/EC	(EC conformity marking)			EMC requirements for uninterruptible power systems (UPS)	Immunity requirements for household appliances tools and similar apparatus	Generic immunity standard Part 2: Industrial environment	Generic immunity standard Part 1: Residual, commercial and light industry	Information Technology equipment-immunity characteristics-Limits and methods of measurement	Disturbances in supply systems caused by household appliances and similar electrical equipment "Voltage fluctuations"	Disturbances in supply systems caused	sclive

DECLARATION OF CONFORMITY

Per FCC Part 2 Section 2.1077(a)

Responsible Party Name: G.B.T. INC. (U.S.A.)

Address: 17358 Railroad Street

City of Industry, CA 91748

Phone/Fax No: (818) 854-9338/ (818) 854-9339

hereby declares that the product

Product Name: Motherboard

Model Number: GA-MA780G-UD3H

Conforms to the following specifications:

(a), Class B Digital Device FCC Part 15, Subpart B, Section 15.107(a) and Section 15.109

Supplementary Information:

cause harmful and (2) this device must accept any inference received, subject to the following two conditions: (1) This device may not This device complies with part 15 of the FCC Rules. Operation is

Representative Person's Name: <u>ERIC LU</u> including that may cause undesired operation.

Date: Jan. 9, 2009

Signature: Eric Lu

(Stamp)

Date: Jan. 9, 2009

Name : Timmy Huang

著作権

© 2008 GIGA-BYTE TECHNOLOGY CO., LTD. 版権所有。

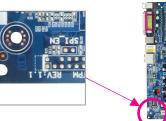
本マニュアルに記載された商標は、それぞれの所有者に対して法的に登録されたものです。

免責条項

このマニュアルの情報は著作権法で保護されており、GIGABYTE に帰属します。 このマニュアルの仕様と内容は、GIGABYTE により事前の通知なしに変更されることがあります。 本マニュアルのいかなる部分も、GIGABYTE の書面による事前の承諾を受けることなしには、いかなる手段によっても複製、コピー、翻訳、送信または出版することは禁じられています。

ドキュメンテーションの分類

本製品を最大限に活用できるように、GIGABYTEでは次のタイプのドキュメンテーションを用意しています:


- 製品を素早くセットアップできるように、製品に付属するクイックインストールガイドをお読みください。
- 詳細な製品情報については、ユーザーズマニュアルをよくお読みください。
- GIGABYTEの固有な機能の使用法については、当社Webサイトの Support\Motherboard\ Technology ガイドの情報をお読みになるかダウンロードしてください。

製品関連の情報は、以下の Web サイトを確認してください:

http://www.gigabyte.com.tw

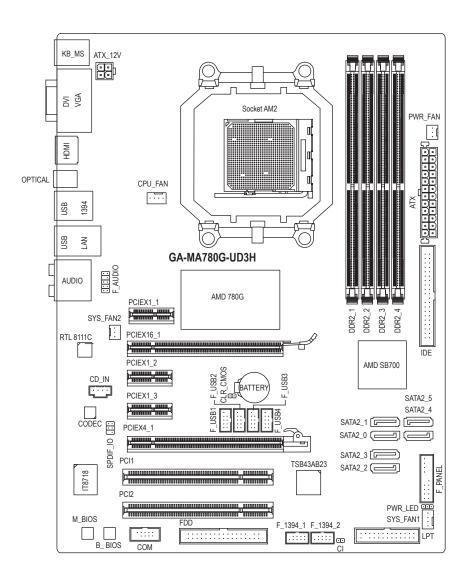
マザーボードリビジョンの確認

マザーボードのリビジョン番号は「REV: X.X」のように表示されます。例えば、「REV: 1.0」はマザーボードのリビジョンが 1.0 であることを意味します。マザーボード BIOS、ドライバを更新する前に、または技術情報をお探しの際は、マザーボードのリビジョンをチェックしてください。例:

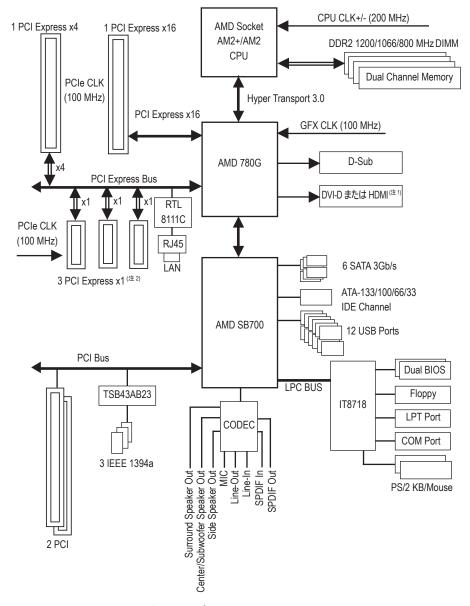
目次

ボックスの	り内容		6
GA-MA78	30G-U[D3H マザーボードのレイアウト	7
ブロック図	☑		8
	_		
第1章	ハー	ドウェアの取り付け	9
	1-1	取り付け手順	9
	1-2	製品の仕様	10
	1-3	CPU および CPU クーラーの取り付け	13
	1-	.3-1 CPU を取り付ける	13
	1-	3-2 CPU クーラーを取り付ける	15
	1-4	メモリの取り付け	16
	1-	4-1 デュアルチャンネルのメモリ設定	16
	1-	4-2 メモリの取り付け	
	1-5	拡張カードの取り付け	
	1-6	ATI Hybrid CrossFireX™ 機能を有効にする	
	1-7	背面パネルのコネクタ	20
	1-8	内部コネクタ	23
第2章	BIOS	S セットアップ	35
	2-1	起動スクリーン	36
	2-2	メインメニュー	37
	2-3	MB Intelligent Tweaker (M.I.T.)	39
	2-4	Standard CMOS Features	43
	2-5	Advanced BIOS Features	45
	2-6	Integrated Peripherals	47
	2-7	Power Management Setup	
	2-8	PnP/PCI Configurations	52
	2-9	PC Health Status	53
	2-10	Load Fail-Safe Defaults	55
	2-11	Load Optimized Defaults	55
	2-12	Set Supervisor/User Password	
	2-13	Save & Exit Setup	
	2-14	Exit Without Saving	

第3章	ドライ	バのインストール	59
	3-1	Installing Chipset Drivers (チップセットドライバのインストール)	59
	3-2	Application Software (アプリケーションソフトウェア)	60
	3-3	Technical Manuals (技術マニュアル)	60
	3-4	Contact (連絡先)	61
	3-5	System (システム)	61
	3-6	Download Center (ダウンロードセンター)	62
第4章	固有여	の機能	63
	4-1	Xpress Recovery2	63
	4-2	BIOS 更新ユーティリティ	66
	4-2-	·1 Q-Flash ユーティリティで BIOS を更新する	66
	4-2-	- 6	
	4-3	EasyTune 6	70
	4-4	Easy Energy Saver	71
	4-5	Q-Share	73
	4-6	Time Repair (時刻修復)	74
第5章	付録.		75
	5-1	SATA ハードドライブの設定	75
	5-1-	.1 オンボード SATA コントローラを設定する	75
	5-1-		
	5-1-	3 SATA RAID/AHCI ドライバとオペレーティングシステムをインストールする	82
	5-2	オーディオ入力および出力を設定	
	5-2-	.1 2/4/5.1/7.1 チャネルオーディオを設定する	86
	5-2-	2 0/12/11/17/17	
	5-2-		
	5-2-		
	5-2-		
		トラブルシューティング	
	5-3-	2 10,0 20,1	
	5-3-		
	5-4	規制準拠声明	97


ボックスの内容

- ☑ GA-MA780G-UD3H マザーボード
- ☑ マザーボードドライバディスク
- ☑ ユーザーズマニュアル
- ☑ クイックインストールガイド
- ☑ IDE ケーブル (x1) およびフロッピーディスク ドライブケーブル (x1)
- ☑ SATA 3Gb/s ケーブル (x2)
- ☑ 1/0 シールド



- 上記のボックスの内容は参照専用であり、実際のアイテムはお求めになった製品パッケージにより異なります。
 - ボックスの内容は、事前の通知なしに変更することがあります。
- マザーボードの画像は参照専用です。

GA-MA780G-UD3H マザーボードのレイアウト

ブロック図

- (注 1) DVI-DとHDMIの同時出力はサポートされません。
- (注 2) PCIEX1_2 と PCIEX1_3 スロットは PCIEX4_1 スロットとハンド幅を共有します。 PCIEX4_1 スロットに x4 カードが装着されているとき、 PCIEX1_2 と PCIEX1_3 は使用できなくなります。

第1章 ハードウェアの取り付け

1-1 取り付け手順

マザーボードには、静電放電 (ESD) の結果損傷する可能性のある精巧な電子回路やコンポーネントが数多く含まれています。取り付ける前に、ユーザーズマニュアルをよくお読みになり、以下の手順に従ってください。

- 取り付ける前に、マザーボードの S/N (シリアル番号) ステッカーまたはディーラーが提供する保証ステッカーを取り外したり、はがしたりしないでください。これらのステッカーは保証の確認に必要です。
- マザーボードまたはその他のハードウェアコンポーネントを取り付けたり取り外したりする前に、常にコンセントからコードを抜いて AC 電力を切ってください。
- ハードウェアコンポーネントをマザーボードの内部コネクタに接続しているとき、しっかりと安全に接続されていることを確認してください。
- マザーボードを扱う際には、金属リード線やコネクタには触れないでください。
- マザーボード、CPU またはメモリなどの電子コンポーネントを扱うとき、静電放電 (ESD) リストストラップを着用することをお勧めします。ESD リストストラップをお持ちでない場合、手を乾いた状態に保ち、まずは金属物体に触れて静電気を取り除いてください。
- マザーボードを取り付ける前に、これを静電防止パッドの上に置くか、静電遮断コンテナの中に入れてください。
- マザーボードから電源装置のケーブルを抜く前に、電源装置がオフになっていることを 確認してください。
- パワーをオンにする前に、電源装置の電圧が地域の電源基準に従っていることを確認してください。
- 製品を使用する前に、ハードウェアコンポーネントのすべてのケーブルと電源コネクタが接続されていることを確認してください。
- マザーボードの損傷を防ぐために、ネジがマザーボードの回路やそのコンポーネントに 触れないようにしてください。
- マザーボードの上またはコンピュータのケース内部に、ネジや金属コンポーネントが残っていないことを確認してください。
- コンピュータシステムは、平らでない面の上に置かないでください。
- コンピュータシステムを高温環境で設置しないでください。
- 取り付け中にコンピュータのパワーをオンにすると、システムコンポーネントが損傷するだけでなく、けがにつながる恐れがあります。
- 取り付けステップについて不明確な場合や、製品の使用に関して疑問な点がございましたら、正規のコンピュータ技術者にお問い合わせください。

1-2 製品の仕様

CPU	◆ Socket AM2+/AM2 processors のサポート:
	AMD Phenom™ FX processor/AMD Phenom™ X4 processor/
	AMD Phenom™ X3 processor/AMD Athlon™ X2 processor/
	AMD Athlon™ processor/AMD Sempron™ X2 processor/
	AMD Sempron™ processor
	(最新の CPU サポートリストについては、GIGABYTE の Web サイトにアクセス
	してください。)
ハイパー	◆ 5200/2000 MT/s
トランスポートバス	
チップセット	◆ ノースブリッジ: AMD 780G
	◆ サウスブリッジ: AMD SB700
メモリ	◆ 最大 16 GB のシステムメモリをサポートする 1.8V DDR2 DIMM ソケット (x4) (注1)
	デュアルチャンネルメモリアーキテクチャ
	◆ DDR2 1200 (注 2)/1066/800 MHz メモリモジュールのサポート
	(最新のメモリサポートリストについては、GIGABYTE の Web サイトにアクセス
	してください。)
オーディオ	◆ Realtek ALC889A コーデック
	ハイディフィニションオーディオ
	◆ 2/4/5.1/7.1 チャンネル
	◆ Dolby® Home Theater のサポート (注3)
	◆ S/PDIF イン/アウトのサポート
	◆ CD 入力のサポート
LAN	• Realtek 8111C チップ (10/100/1000 Mbit)
拡張スロット	◆ 1 x PCI Express x16 スロット (注4)、x16 (PCIEX16_1) で動作
	◆ 1 x PCI Express x16 スロット、x4 (PCIEX4_1) で動作
	(PCIEX16_1と PCIEX4_1 スロットは ATI Hybrid CrossFireX™ 技術をサポート
	し、PCI Express 2.0 規格に準拠しています。)
	• 3 x PCI Express x1 スロット(PCIEX1_2 と PCIEX1_3 スロットは PCIEX4_1 ス
	ロットと同じ PCle バスを共有します。) (注5)
	◆ PCI スロット (x2)
ストレージインター	サウスブリッジ:
フェイス	- ATA-133/100/66/33 および 1 つの IDE デバイスをサポートする IDE コネクタ (x2)
	- 最大 6 つの SATA 3Gb/s デバイスをサポートする 6 x SATA 3Gb/s コネクタ
	- SATA RAID 0、RAID 1、RAID 10、および JBOD をサポート
	◆ iTE IT8718 チップ:
	- 最大 1 つのフロッピーディスクドライブをサポートするフロッピーディスクドラ
	イブコネクタ (x1)
IEEE 1394	◆ T.I. TSB43AB23 チップ
	◆ 最大 3 つの IEEE 1394a ポート (背面パネルにつ、内部 IEEE 1394a ヘッダに
	接続された IEEE 1394a ブラケットを介して 2 つ)
USB	サウスブリッジに統合
•	◆ 最大 12つの USB 2.0/1.1 ポート (背面パネルに 4つ、内部 USB ヘッダに接
	続された USB ブラケットを介して 8 つ)
	4,500,500,500,771,600,571

内部コネクタ	◆ 24 ピン ATX メイン電源コネクタ (x1)
	◆ 4ピンATX 12V 電源コネクタ (x1)
	◆ フロッピーディスクドライブコネクタ (x1)
	◆ IDE コネクタ (x1)
	◆ SATA 3Gb/s コネクタ (x6)
	◆ CPU ファンヘッダ (x1)
	◆ システムファンヘッダ (x2)
	◆ 電源ファンヘッダ (x1)
	◆ 前面パネルヘッダ (x1)
	◆ 前面パネルオーディオヘッダ (x1)
	◆ CD インコネクタ (x1)
	◆ S/PDIF イン/アウトヘッダ (x1)
	◆ IEEE 1394a ヘッダ (x2)
	◆ USB 2.0/1.1 ヘッダ (x4)
	◆ パラレルポートヘッダ (x1)
	◆ シリアルポートヘッダ (x1)
	◆ シャーシ侵入ヘッダ (x1)
	◆ 電源 LED ヘッダ (x1)
背面パネルのコネクタ	◆ PS/2 キーボード (x1)
	◆ PS/2 マウスポート (x1)
	◆ D-Sub ポート (x1)
	◆ DVI-D ポート ^{(注 6) (注 7)} (x1)
	◆ HDMI ポート ^(注 7) (x1)
	◆ 光 S/PDIF アウトコネクタ (x1)
	◆ IEEE 1394a ポート (x1)
	◆ USB 2.0/1.1 ポート (x4)
	◆ RJ-45 ポート (x1)
	オーディオジャック (x6) (センター/サブウーファスピーカーアウト/背面スピーカー
	アウト/側面スピーカーアウト/ラインイン/ラインアウト/マイク)
1/0 コントローラ	◆ iTE IT8718 チップ
ハードウェアモニタ	◆ システム電圧の検出
	◆ CPU / システム温度の検出
	◆ CPU / システム / 電源ファン速度検出
	◆ CPU 過熱警告
	◆ CPU / システムファンエラー警告
	◆ CPU / システムファン速度の制御 (注8)
BIOS	◆ 8 Mbit フラッシュ (x2)
	◆ ライセンスを受けた AWARD BIOS の使用
	◆ Dual BIOS™ のサポート
	 PnP 1.0a, DMI 2.0, SM BIOS 2.4, ACPI 1.0b

固有の機能

- ◆ @BIOS のサポート
- ◆ Q-Flash のサポート
- ◆ Virtual Dual BIOS のサポート
- ◆ Download Center のサポート
- Xpress Install のサポート
- ◆ Xpress Recovery2 のサポート
- EasyTune のサポート^(注9)
- ◆ Easy Energy Saver のサポート (注 10)
- ◆ Time Repair のサポート
- Q-Share のサポート

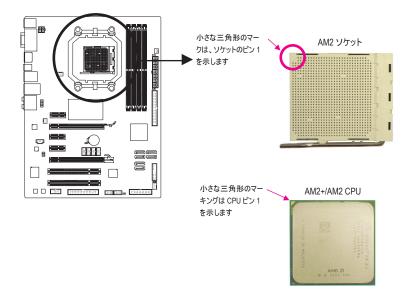
バンドルされたソフトウェア◆ Norton インターネットセキュリティ (OEM バージョン)

オペレーティング システム◆ Microsoft® Windows® Vista/XP のサポート

フォームファクタ ◆ ATX フォームファクタ、30.5cm x 22.8cm

- (注 1) Windows Vista/XP 32 ビットオペレーティングシステムの制限により、4 GB 以上の物理メモリを取り付けても、表示される実際のメモリサイズは 4 GB より少なくなります。
- (注 2) メモリ速度がサポートされるかどうかは、使用される CPU によって異なります。
- (注 3) Windows Vista/XP 32 ビットオペレーティングシステムの場合のみ。
- (注 4) PCI Express グラフィックスカードを取り付けている場合、最適のパフォーマンスを出すには必ず PCIEX16_1 スロットに取り付けてください。
- (注 5) PCIEX1_2 と PCIEX1_3 スロットは PCIEX4_1 スロットとハンド幅を共有します。 PCIEX4_1 スロット に x4 カードが装着されているとき、 PCIEX1_2 と PCIEX1_3 は使用できなくなります。
- (注 6) DVI-D ポートはアダプタによる D-Sub をサポートしません。
- (注7) DVI-DとHDMIの同時出力はサポートされていません。
- (注 8) CPU/システムのファン速度制御機能がサポートされているかどうかは、取り付ける CPU/システム クーラーによって異なります。
- (注9) EasyTune の使用可能な機能は、マザーボードのモデルによって異なります。
- (注 10) ハードウェア制限により、Easy Energy Saver のサポートを有効にするには、AMD AM2+ Phenom™ シリーズ CPU を取り付ける必要があります。

1-3 CPU および CPU クーラーの取り付け



CPU を取り付ける前に次のガイドラインをお読みください:

- マザーボードが CPU をサポートしていることを確認してください。
 (最新の CPU サポートリストについては、GIGABYTE の Web サイトにアクセスしてください)。
- ハードウェアが損傷する原因となるため、CPUを取り付ける前に必ずコンピュータのパワーをオフにし、コンセントから電源コードを抜いてください。
- CPU のピン1を探します。CPU は間違った方向には差し込むことができません。
- CPU の表面に熱伝導グリスを均等に薄く塗ります。
- CPU クーラーを取り付けないうちは、コンピュータのパワーをオンにしないでください。 CPU が損傷する原因となります。
- CPU の仕様に従って、CPU のホスト周波数を設定してください。ハードウェアの仕様を超えたシステムバスの周波数設定は周辺機器の標準要件を満たしていないため、お勧めできません。標準仕様を超えて周波数を設定したい場合は、CPU、グラフィックスカード、メモリ、ハードドライブなどのハードウェア仕様に従ってください。

1-3-1 CPU を取り付ける

A. CPU ソケットのピン 1(小さな三角形で表示)と CPU を確認します。

B. 以下のステップに従って、CPU をマザーボードの CPU ソケットに正しく取り付けてください。

CPU を取り付ける前に、CPU の損傷を防ぐためにコンピュータのパワーをオフにし、コンセントから 電源コードを抜いてください。

ステップ 1: CPU ソケットロックレバーを完全に持ち上げます。

ステップ 2: CPU ピン 1(小さな三角形のマーキング)を CPU ソケットの三角形のマークに合わせ、CPU をソケットにそっと挿入します。CPU ピンがそれ らの穴にぴたりと適合することを確認してください。CPU をソケットに配置したら、CPU の中央 に 1 本の指を置き、ロックレバーを下げながら 完全にロックされた位置にラッチを掛けます。

CPU を CPU ソケットに無理に押し込まないでください。 CPU は間違った方向には適合しません。 この場合、 CPU の方向を調整してください。

1-3-2 CPU クーラーを取り付ける

以下のステップに従って、CPU に CPU クーラーを正しく取り付けてください。(次の手順では、例として GIGABYTE クーラーを使用します。)

ステップ 1: 取り付けた CPU の表面に熱伝導グリスを均等に薄く塗ります。

ステップ 2: CPU に CPU クーラーを置きます。

ステップ 3: CPU クーラーのクリップを保持フレームの一方の 側の取り付けラグに引っ掛けます。反対側で、 CPU クーラーのクリップを真っ直ぐ押し下げて保 持フレームの取り付けラグに引っ掛けます。

左側から右側にカムハンドルを回して所定の位置にロックします(上図を参照)。(クーラーを取り付ける方法については、CPU クーラーの取り付けマニュアルを参照してください。)

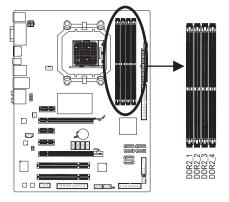
ステップ 5: 最後に、CPU クーラーの電源コネクタをマザーボードの CPU ファンヘッダ (CPU_FAN) に取り付けてください。

CPU クーラーと CPU の間の熱伝導グリス/テープは CPU にしっかり接着されているため、CPU クーラーを取り外すときは、細心の注意を払ってください。 CPU クーラーを不適切に取り外すと、CPU が損傷する恐れがあります。

1-4 メモリの取り付け

メモリを取り付ける前に次のガイドラインをお読みください:

- マザーボードがメモリをサポートしていることを確認してください。同じ容量、ブランド、速度、 およびチップのメモリをご使用になることをお勧めします。 (最新のメモリサポートリストについては、GIGABYTE の Web サイトにアクセスしてください)。
- ハードウェアが損傷する原因となるため、メモリを取り付ける前に必ずコンピュータのパワーを オフにし、コンセントから電源コードを抜いてください。
- メモリモジュールは、フールプルーフ設計が施されています。メモリモジュールは、一方向にしか 挿入できません。メモリを挿入できない場合は、方向を変えてください。


1-4-1 デュアルチャンネルのメモリ設定

このマザーボードには、DDR2 メモリソケットが搭載されており、デュアルチャンネルテクノ ロジをサポートします。メモリを取り付けた後、BIOS はメモリの仕様と容量を自動的に 検出します。デュアルチャンネルメモリモードを有効にすると、元のメモリバンド幅が2倍 になります。

4 つの DDR2 メモリソケットが 2 つのチャンネルに分割され、それぞれのチャンネルには以下のように 2 つの メモリソケットが付いています:

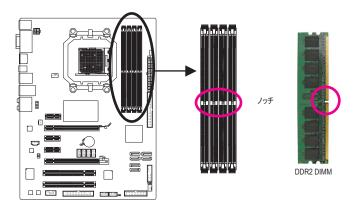
▶ チャンネル 0: DDR2_1, DDR2_3 ▶ チャンネル 1: DDR2_2, DDR2_4

▶ デュアルチャンネルメモリ設定表

	DDR2_1	DDR2_2	DDR2_3	DDR2_4
2 つのモジュール	DS/SS	DS/SS		
			DS/SS	DS/SS
4 つのモジュール	DS/SS	DS/SS	DS/SS	DS/SS

(SS=片面、DS=両面、「-- I=メモリなし)

2 つのメモリモジュールを取り付ける場合、DDR2_1 と NOTE DDR2_2 ソケットに取り付けることをお勧めします。


CPU 制限により、デュアルまたは3 チャンネルモードでメモリを取り付ける前に次のガイドラインをお読みく ださい。

- 1. DDR2 メモリモジュールが1つしか取り付けられていない場合、デュアルチャンネルモードは有効に なりません。
- 2. 2 つまたは 4 つのメモリモジュールでデュアルチャンネルモードを有効にするとき、最適のパフォー マンスを発揮させるには同じ容量、ブランド、速度、およびチップのメモリを使用し、同じ色の DDR2 ソケットに取り付けることをお勧めします。

1-4-2 メモリの取り付け

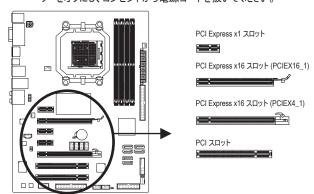
メモリモジュールを取り付ける前に、メモリモジュールの損傷を防ぐためにコンピュータのパワーをオフ にし、コンセントから電源コードを抜いてください。 DDR2 DIMMs は DDR DIMM と互換性がありません。 このマザーボードには、必ず DDR2 DIMM を取り付けるようにしてください。

DDR2 メモリモジュールにはノッチが付いているため、一方向にしかフィットしません。以下のステップに従って、メモリソケットにメモリモジュールを正しく取り付けてください。

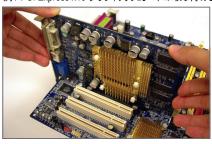
ステップ 1:

メモリモジュールの方向に注意します。メモリソケットの両端の保持クリップを広げ、ソケットにメモリモジュールを取り付けます。 左の図に示すように、指をメモリの上に置き、メモリを押し下げ、メモリソケットに垂直に差し込みます。

ステップ 2:


メモリモジュールがしっかり差し込まれると、ソケットの両端のチップ ばカチッと音を立てて所定の位置に収まります。

1-5 拡張カードの取り付け


拡張カードを取り付ける前に次のガイドラインをお読みください:

- マザーボードが拡張カードをサポートしていることを確認してください。拡張カードに付属するマニュアルをよくお読みください。
- ハードウェアが損傷する原因となるため、拡張カードを取り付ける前に必ずコンピュータのパワーをオフにし、コンセントから電源コードを抜いてください。

以下のステップに従って、拡張スロットに拡張カードを正しく取り付けてください。

- カードをサポートする拡張スロットを探します。シャーシの背面パネルから金属製のスロットカバーを取り外します。
- 2. カードの位置をスロットに合わせ、スロットに完全に装着されるまでカードを下に押します。
- 3. カードの金属の接点がスロットに完全に挿入されていることを確認します。
- 4. カードの金属製ブラケットをねじでシャーシの背面パネルに固定します。
- 5. すべての拡張カードを取り付けたら、シャーシカバーを元に戻します。
- 6. コンピュータのパワーをオンにします。必要に応じて、BIOS セットアップを開き、拡張カードで要求される BIOS の変更を行ってください。
- 7. 拡張カードに付属するドライバを、オペレーティングシステムにインストールします。
- 例: PCI Express x16 グラフィックスカードの取り付けと取り外し:

 グラフィックスカードの取り付け: カードの上端が PCIEX16_1 スロットに完全に挿入されるまで、そっと押し下げます。カードがス

ロットにしっかり装着され、ロックされていないことを確認してください。

PCIEX16_1 スロットから カードを取り外す: スロットのレバーをそっ と押し返し、カードをス ロットからまっすぐ上に 持ち上げます。

PCIEX4_1 スロットから カードを取り外す: スロットの端の白いラッ チを押してカードのロッ クを解除し、スロットか ら真っ直ぐEUに引っ張 ります。

1-6 ATI Hybrid CrossFireX™ 機能を有効にする

オンボード GPU を別々のグラフィックカードと組み合わせることで、ATI Hybrid CrossFireX は AMD プラットフォームに対してきわめて高度な表示パフォーマンスを提供することができます。このセクションでは、ATI Hybrid CrossFireX システムの構成に関して詳しくご説明します。

A. 始める前に --

1. オペレーティングシステム要件:

Windows Vista と Windows XP*.

2. BIOS セットアップ:

BIOS セットアップに入り、Advanced BIOS Features メニューの下で、次の項目を設定します:

- Internal Graphics Mode を UMA に設定します。
- UMA Frame Buffer Size を 256MB に設定します。
- Surround View を Disabled に設定します。
- Init Display First を Onboard に設定します。

3. グラフィックカード要件:

ATI Hybrid CrossFireX 対応のグラフィックスカード。

B. ATI Hybrid CrossFireX ドライバのインストールとセットアップ

マザーボードドライバディスクを挿入し、Installing Chipset Drivers (チップセットドライバをインストールする) を選択します。Xpress Install をクリックしてインストールします。完了したら、システムを再起動します。以下のステップに従って、ATI Hybrid CrossFireX を有効にしてください。

ステップ 1:

システムの再起動後、システムトレイにATIアイコン 11 が表示されます。 アイコンを右クリックして、Catalyst Control Center に入ります。

ステップ 2:

CrossFire メニューに入り、Enable CrossFire チェックボックスを選択します。

- マザーボードドライバがすでにインストールされている場合、グラフィックカードドライバをインストールする必要はありません。
- BIOS 設定で Internal Graphic Mode または UMA Frame Buffer Size 設定を変更するには、まずオペレーティングシステムで CrossFire 機能を無効にする必要があります。
- * Windows XP の場合、バージョン 8.51 以上の AMD チップセットドライバをインストールする必要があります。

1-7 背面パネルのコネクタ

◎ PS/2 キーボードと PS/2 マウスポート

上部ポート(緑)を使って PS/2 マウスを接続し、下部ポート(紫)を使用して PS/2 キーボードを接続します。

の D-Sub ポート

D-Sub ポートは 15ピン D-Sub コネクタをサポートします。 D-Sub 接続をサポートするモニタをこのポートに接続してください。

● DVI-D ポート

DVI-D ポートは DVI-D 仕様をサポートします。 DVI-D 接続をサポートするモニタをこのポートに接続してください。

の HDMIポート

HDMI (ハイディフィニションマルチメディアインターフェイス) では、オールデジタルオーディオ/ビデオインターフェイスを用意して非圧縮オーディオ/ビデオ信号を送信し、HDCP に準拠しています。HDMI オーディオ/ビデオデバイスをこのポートに接続します。HDMI テクノロジは 1920x1080p の最大解像度をサポートできますが、サポートされる実際の解像度は使用するモニタによって異なります。

- HDMI デバイスをインストールした後、サウンド再生用の既定値のデバイスがHDMIデバイス になっていることを確認してください。(項目名は、オペレーティングシステムによって異なり ます。次の画面は Windows Vista の画面です。)
- HDMI オーディオ出力は AC3、DTS および 2 チャンネル LPCM 形式のみをサポートしますのでご 注意ください。(AC3 および DTS では、デコード用に外部デコーダを使用する必要があります。)

Windows Vista では、スタート > コントロールパネル > サウンドを選択し、Realtek HDMI Output (Realtek HDMI 出力) を選択してから Set Default (既定値に設定)をクリックします。

A. デュアルディスプレイ設定:

このマザーボードには、ビデオ出力に対して DVI-D、HDMI および D-Sub の3つのポートが用意されていま す。以下の表では、サポートされるデュアルディスプレイ設定を示しています。

デュアルディスプレイ	結合	サポートまたは非サポート	
	DVI-D + D-Sub	はい	
	DVI-D + HDMI	いいえ	
	HDMI + D-Sub	はい	

B. HD DVD と Blu-ray ディスクの再生:

再生品質を上げるために、HD DVD または Blu-ray ディスクを再生しているとき、以下の最低システム 要件を参照してください。

- CPU: AMD Athlon™ LE1640 以上のプロセッサ
- メモリ: デュアルチャンネルモードを有効にした2つの1GB DDR2800メモリモジュール
- BIOS セットアップ: 256 MB 以上の UMA フレームバッファサイズ (詳細は、第2章「BIOS セットアッ プ」、「拡張 BIOS 機能」を参照してください)
- 再生ソフトウェア: CyberLink PowerDVD 8.0 以上(注:ハードウェアアクセラレーションが有効に なっていることを確認してください)

ファイル形式	適切な解像度		
	Windows XP	Windows Vista	
保護されていない内容	1920 x 1080p	1920 x 1080p	
HD-DVD	1920 x 1080p	1920 x 1080p	
Blu-ray	1920 x 1080p	1920 x 1080p	

このコネクタは、デジタル光オーディオをサポートする外部オーディオシステムにデジタルオーディオアウ トを提供します。この機能を使用する前に、オーディオシステムが光デジタルオーディオインコネクタを 提供していることを確認してください。

● IEEE 1394a ポート

IEEE 1394 ポートは IEEE 1394a 仕様をサポートし、高速、高いバンド幅およびホットプラグ機能を特 徴としています。IEEE 1394a デバイスの場合、このポートを使用します。

● USB ポート

USB ポートは USB 2.0/1.1 仕様をサポートします。 USB キーボード/マウス、 USB プリンタ、 USB フラッ シュドライバなどの USB デバイスの場合、このポートを使用します。

Gigabit イーサネット LAN ポートは、最大 1 Gbps のデータ転送速度のインターネット接続を提供しま す。以下は、LANポートLEDの状態を説明しています。

LAN ポート

接続/速度 LED:

状態	説明
オレンジ	1 Gbps のデータ転送速度
緑	100 Mbps のデータ転送速度
オフ	10 Mbps のデータ転送速度

アクティビティ LED:

状態	説明
点滅	データの送受信中です
オフ	データを送受信していません

● センター/サラウンドスピーカーアウトジャック (オレンジ)

このオーディオジャックを使用して、5.1/7.1 チャンネルオーディオ設定のセンター/サブウーファスピーカーを接続します。

● リアスピーカーアウトジャック(黒)

このオーディオジャックを使用して、4/5.1/7.1 チャンネルオーディオ設定のリアスピーカーを接続します。

サイドスピーカーアウトジャック (グレー)

このオーディオジャックを使用して、7.1 チャンネルオーディオ設定のサイドスピーカーを接続します。

● ラインインジャック(青)

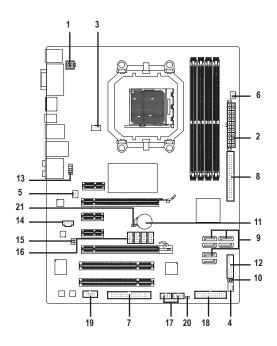
既定値のラインインジャックです。光ドライブ、ウォークマンなどのデバイスのラインインの場合、このオーディオジャックを使用します。

∞ ラインアウトジャック(緑)

既定値のラインアウトジャックです。ヘッドフォンまたは2 チャンネルスピーカーの場合、このオーディオジャックを使用します。このジャックを使用して、4/5.1/7.1 チャンネルオーディオ設定の前面スピーカーを接続します。

□ マイクインジャック (ピンク)

既定値のマイクインジャックです。マイクは、このジャックに接続する必要があります。



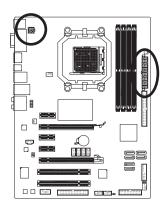
既定値のスピーカー設定の他に、 ● ~ ● オーディオジャックを設定し直してオーディオソフトウェア経由でさまざまな機能を実行することができます。マイクだけは、既定値のマイクインジャックに接続する必要があります (●)。2/4/5.1/7.1チャンネルオーディオ設定のセットアップに関する使用説明については、第5章「2/4/5.1/7.1 チャンネルオーディオの設定」を参照してください。

- 背面パネルコネクタに接続されたケーブルを取り外しているとき、まずデバイスからケーブルを取り外し、次にマザーボードからケーブルを取り外します。
- ・ ケーブルを取り外しているとき、コネクタから真っ直ぐに引き抜いてください。ケーブルコネクタ 内部でショートする原因となるので、横に揺り動かさないでください。

1-8 内部コネクタ

1)	ATX_12V	12)	F_PANEL
2)	ATX	13)	F_AUDIO
3)	CPU_FAN	14)	CD_IN
4)	SYS_FAN1	15)	SPDIF_IO
5)	SYS_FAN2	16)	F_USB1 / F_USB2 / F_USB3 / F_USB4
6)	PWR_FAN	17)	F_1394_1 / F_1394_2
7)	FDD	18)	LPT
8)	IDE	19)	COM
9)	SATA2_0/1/2/3/4/5	20)	CI
10)	PWR_LED	21)	CLR_CMOS
11)	BATTERY		

外部デバイスを接続する前に、以下のガイドラインをお読みください。

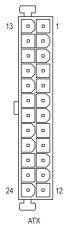

- まず、デバイスが接続するコネクタに準拠していることを確認します。
- デバイスを取り付ける前に、デバイスとコンピュータのパワーがオフになっていることを確認します。デバイスが損傷しないように、コンセントから電源コードを抜きます。
 - デバイスをインストールした後、コンピュータのパワーをオンにする前に、デバイスのケーブルがマ ザーボードのコネクタにしっかり接続されていることを確認します。

1/2) ATX 12V/ATX (2x2 12V 電源コネクタと 2x12 メインの電源コネクタ)

電源コネクタを使用すると、電源装置はマザーボードのすべてのコンポーネントに安定した電力を供給することができます。電源コネクタを接続する前に、まず電源装置のパワーがオフになっていること、すべてのデバイスが正しく取り付けられていることを確認してください。電源コネクタは、絶対に確実な設計が施されています。電源装置のケーブルを正しい方向で電源コネクタに接続します。12V電源コネクタは、主に CPU に電力を供給します。12V電源コネクタが接続されていない場合、コンピュータは起動しません。

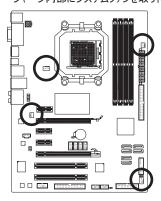
- 拡張要件を満たすために、高い消費電力に耐えられる電源装置をご使用になることをお 勧めします (500W 以上)。必要な電力を供給できない電源装置をご使用になると、シス テムが不安定になったり起動できない場合があります。
- メインの電源コネクタは、2x10 電源コネクタを持つ電源装置と互換性があります。2x12 電源装置を使用しているとき、マザーボードのメインの電源コネクタから保護カバーを取り外します。2x10 電源装置を使用しているとき、保護カバーの下のピンに電源装置のケーブルを挿入しないでください。

ΛΤΥ·



+12V

ATX 12V:


4

AIX:			
ピン番号	定義	ピン番号	定義
1	3.3V	13	3.3V
2	3.3V	14	-12V
3	GND	15	GND
4	+5V	16	PS_ON (ソフトオン/オフ)
5	GND	17	GND
6	+5V	18	GND
7	GND	19	GND
8	パワー良し	20	-5V
9	5V SB (スタンバイ +5V)	21	+5V
10	+12V	22	+5V
11	+12V (2x12ピンATX 専用)	23	+5V (2x12ピンATX 専用)
12	3.3V (2x12ピンATX 専用)	24	GND (2x12ピンATX 専用)

3/4/5/6) CPU FAN/SYS FAN1/SYS FAN2/PWR FAN (ファンヘッダ)

マザーボードには 4 ピン CPU ファンヘッダ(CPU_FAN)、3 ピン(SYS_FAN2)と 4 ピン(SYS_FAN1)システ ムファンヘッダ、および 3 ピン電源ファンヘッダ(PWR FAN)。 ほとんどのファンヘッダはきわめて簡単な挿 入設計が施されています。ファンケーブルを接続するとき、正しい方向で接続していることを確認して ください(黒いコネクタはアース用線です)。 マザーボードは CPU ファン速度制御をサポートし、ファン 速度制御設計を搭載した CPU ファンを使用する必要があります。最適の放熱を実現するために、 シャーシ内部にシステムファンを取り付けることをお勧めします。

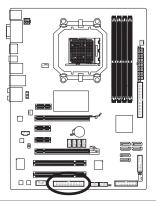
CPU FAN:

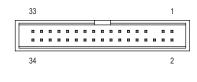
ピン番号	定義			
1	GND			
2	+12V / 速度制御			
3	検知			
4	予備			
SYS FAN2/PWR FAN:				

	_
ピン番号	定義

ピン番号	定義
1	GND
2	+12V
3	検知

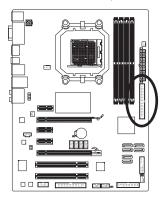
CPU とシステムを過熱から保護するために、ファンケーブルをファンヘッダに接続していること を確認してください。 過熱は CPU ブリッジが損傷したり、 システムがハングアップする原因と なります。

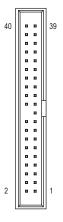

SYS_FAN2


PWR_FAN

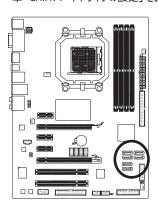
 これらのファンヘッダは、設定ジャンパブロックではありません。ヘッダにジャンプのキャップを取 り付けないでください。

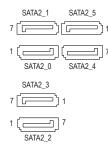
7) FDD (フロッピーディスクドライブコネクタ)


このコネクタは、フロッピーディスクドライブを接続するために使用されます。サポートされるフロッピー ディスクドライブの種類は、次の通りです。360 KB、720 KB、1.2 MB、1.44 MB、および 2.88 MB。フロッ ピーディスクドライブを接続する前に、コネクタとフロッピーディスクケーブルのピンを確認してください。 ケーブルのピン1は、一般に異なる色のストライプで区別されています。



8) IDE (IDE コネクタ)

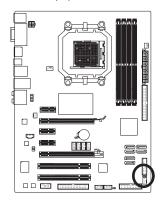

IDE コネクタは、ハードドライブや光ドライブなど最大 2 つの IDE デバイスをサポートします。IDE ケーブルを接続する前に、コネクタに絶対に確実な溝を探します。2 つの IDE デバイスを接続する場合、ジャンパとケーブル配線を IDE の役割に従って設定してください (たとえば、マスタまたはスレーブ)。 (IDE デバイスのマスタ/スレーブ設定を実行する詳細については、デバイスメーカーの提供する使用説明書をお読みください)。



9) SATA2 0/1/2/3/4/5 (SATA 3Gb/s コネクタ)

SATA コネクタは SATA 3Gb/s 標準に準拠し、SATA 1.5Gb/s 標準との互換性を有しています。それぞれの SATA コネクタは、単一の SATA デバイスをサポートします。AMD SB700 コントローラは RAID 0、RAID 1、RAID 10、および JBOD をサポートします。RAID アレイの設定の使用説明については、第5章「SATA ハードドライブの設定」をお読みください。

SATA 3Gb/s ケーブルの L 形状の端を SATA ハードドライブに接続してください。

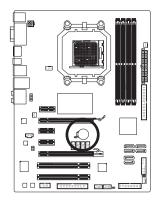


- RAID 0 または RAID 1 設定は、少なくとも 2 台のハードドライブを必要とします。2 台のハードドライブを使用する場合、ハードドライブの総数は偶数に設定する必要があります。
- RAID 10 設定は少なくとも 4 台のハードドライブを必要とし、ハードドライブの総数は偶数に設定する必要があります。

10) PWR LED (システム電源 LED ヘッダ)

このヘッダはシャーシにシステムの電源 LED を接続し、システムの電源ステータスを示すために使用できます。システムが作動しているとき、LED はオンになります。システムが S1 スリーブ状態に入ると、LED は点滅を続けます。システムが S3/S4 スリープ状態に入っているとき、またはパワーがオフになっているとき (S5)、LED はオフになります。

1 000



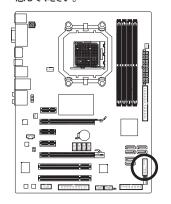
ピン番号	定義	
1	MPD+	
2	MPD-	
3	MPD-	

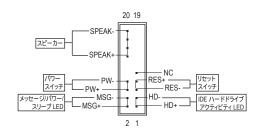
システムステータス	LED
S0	オン
S1	点滅
S3/S4/S5	オフ

11) BATTERY (バッテリ)

バッテリは、コンピュータがオフになっているとき CMOS の値 (BIOS 設定、日付、および時刻情報など)を維持するために、電力を提供します。バッテリの電圧が低レベルまで下がったらバッテリを交換してください。そうしないと、CMOS 値が正確に表示されなかったり失われる可能性があります。

バッテリを取り外すと、CMOS 値を消去できます。


- 1. コンピュータのパワーをオフにし、パワーコードを抜きます。
- バッテリホルダからバッテリをそっと取り外し、1分待ちます。 (または、ドライバーのような金属物体を使用してバッテリホルダの 正および負の端子に触れ、5秒間ショートさせます)。
- 3. バッテリを交換します。
- 4. 電源コードを差し込み、コンピュータを再起動します。



- バッテリを交換する前に、常にコンピュータのパワーをオフにしてから電源コードを抜いてください。
- バッテリを同等のバッテリと交換します。バッテリを正しくないモデルと交換すると、爆発する 恐れがあります。
- バッテリを自分自身で交換できない場合、またはバッテリのモデルがはっきり分からない場合は、購入店または地域代理店にお問い合わせください。
- バッテリを取り付けるとき、バッテリのプラス側(+)とマイナス側(-)の方向に注意してください(プラス側を上に向ける必要があります)。
- 使用済みバッテリは、地域の環境規制に従って処理する必要があります。

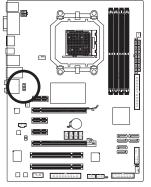
12) F PANEL (前面パネルヘッダ)

シャーシ前面パネルのパワースイッチ、リセットスイッチ、スピーカーおよびシステムステータスインジケー タを、以下のピン配列に従ってこのヘッダに接続します。ケーブルを接続する前に、正と負のピンに注 意してください。

MSG (メッセージ/パワー/スリープ LED、黄):

システム ステータス	LED
S0	オン
S1	点滅
S3/S4/S5	オフ

シャーシ前面パネルの電源ステータスインジケータに接続します。システ ムが作動しているとき、LED はオンになります。 システムが S1 スリープ状 態に入ると、LED は点滅を続けます。 システムが S3/S4 スリープ状態に 入っているとき、またはパワーがオフになっているとき (S5)、LED はオフにな ります。

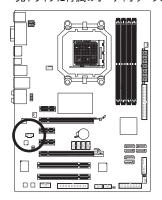

- PW (パワースイッチ、赤): シャーシ前面パネルのパワースイッチに接続します。パワースイッチを使用してシステムのパワーをオ フにする方法を設定できます(詳細については、第2章「BIOSセットアップ」、「電源管理のセット アップ」を参照してください)。
- SPEAK (スピーカー、オレンジ): シャーシ前面パネルのスピーカーに接続します。システムは、ビープコードを鳴らすことでシステムの 起動ステータスを報告します。システム起動時に問題が検出されない場合、短いビープ音が1 度鳴ります。問題を検出すると、BIOS は異なるパターンのビープ音を鳴らして問題を示します。ビ ープコードの詳細については、第5章「トラブルシューティング」を参照してください。
- HD (IDE ハードドライブアクティビティ LED、青): シャーシ前面パネルのハードドライブアクティビティ LED に接続します。ハードドライブがデータの読 み書きを行っているとき、LEDはオンになります。
- RES (リセットスイッチ、緑): シャーシ前面パネルのリセットスイッチに接続します。コンピュータがフリーズし通常の再起動を実 行できない場合、リセットスイッチを押してコンピュータを再起動します。
- NC (紫): 接続なし。

前面パネルのデザインは、シャーシによって異なります。前面パネルモジュールは、パワースイッ チ、リセットスイッチ、電源 LED、ハードドライブアクティビティ LED、スピーカーなどで構成され ています。シャーシ前面パネルモジュールをこのヘッダに接続しているとき、ワイヤ割り当てとピ ン割り当てが正しく一致していることを確認してください。

13) F AUDIO (前面パネルオーディオヘッダ)

前面パネルのオーディオヘッダは、Intel ハイデフィニションオーディオ (HD) と AC' 97 オーディオをサポートします。 シャーシ前面パネルのオーディオモジュールをこのヘッダに接続することができます。 モジュールコネクタのワイヤ割り当てが、 マザーボードヘッダのピン割り当てに一致していることを確認してください。 モジュールコネクタとマザーボードヘッダ間の接続が間違っていると、 デバイスは作動せず損傷することすらあります。

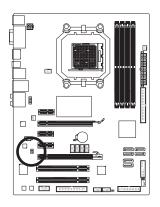
HD 前面パネルオーディオ AC'97 前面パネルオーディ の場合: オの場合:


ピン番号	定義	ピン番号	定義
1	MIC2_L	1	MIC
2	GND	2	GND
3	MIC2_R	3	MICパワー
4	-ACZ_DET	4	NC
5	LINE2_R	5	ラインアウト(右)
6	GND	6	NC
7	FAUDIO_JD	7	NC
8	ピンなし	8	ピンなし
9	LINE2_L	9	ラインアウト(左)
10	GND	10	NC

- 前面パネルのオーディオヘッダは、既定値で HD オーディオをサポートしています。 シャーシ に AC'97 前面パネルのオーディオモジュールが搭載されている場合、オーディオソフトウェ アを介して AC'97 機能をアクティブにする方法については、第 5 章「2/4/5.1/7.1-チャンネル オーディオの設定」の使用説明を参照してください。
- オーディオ信号は、前面と背面パネルのオーディオ接続の両方に同時に存在します。背面パネルのオーディオ (HD 前面パネルオーディオモジュールを使用しているときにのみサポート)を消音にする場合、第5章の「2/4/5.1/7.1チャンネルオーディオを設定する」を参照してください。
- シャーシの中には、前面パネルのオーディオモジュールを組み込んで、単一プラグの代わりに各ワイヤのコネクタを分離しているものもあります。ワイヤ割り当てが異なっている前面パネルのオーディオモジュールの接続方法の詳細については、シャーシメーカーにお問い合わせください。

14) CD_IN (CD入カコネクタ)

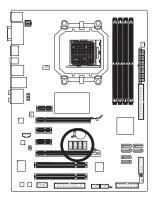
光ドライブに付属のオーディオケーブルをヘッダに接続することができます。



ピン番号	定義
1	CD-L
2	GND
3	GND
4	CD-R

15) SPDIF_IO (S/PDIF イン/アウトヘッダ、赤)

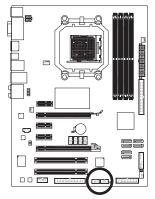
このヘッダは、デジタル S/PDIF イン/アウトをサポートします。オプションの S/PDIF インおよびアウトケーブルを通って、このヘッダはデジタルオーディオアウトをサポートするオーディオデバイスに、デジタルオーディオインをサポートするオーディオシステムに接続できます。オプションの S/PDIF インおよびアウトケーブルを購入する場合は、最寄りの販売店にお問い合せください。



ピン番号	定義	
1	電源	
2	ピンなし	
3	SPDIF	
4	SPDIFI	
5	GND	
6	GND	

16) F_USB1/F_USB2/F_USB3/F_USB4 (USB ヘッダ、黄)

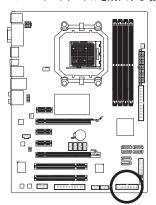
へッダは USB 2.0/1.1 仕様に準拠しています。各 USB ヘッダは、オプションの USB ブラケットを介して 2 つの USB ポートを提供できます。オプションの USB ブラケットを購入する場合は、地域の代理店に お問い合わせください。

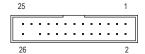

ピン番号	定義		
1	電源 (5V)		
2	電源 (5V)		
3	USB DX-		
4	USB DY-		
5	USB DX+		
6	USB DY+		
7	GND		
8	GND		
9	ピンなし		
10	NC		

- IEEE 1394 ブラケット (2x5 ピン) ケーブルを USB ヘッダに差し込まないでください。
- USB ブラケットを取り付ける前に、USB ブラケットが損傷しないように、必ずコンピュータのパワーをオフにし電源コードをコンセントから抜いてください。

17) F 1394 1/F 1394 2 (IEEE 1394a ヘッダ、グレイ)

ヘッダは IEEE 1394a 仕様に準拠しています。IEEE 1394a ヘッダは、オプションの IEEE 1394a ブラケットを介して 1 つの IEEE 1394a ポートを提供します。オプションの IEEE 1394a ブラケットを購入する場合は、地域の代理店にお問い合わせください。

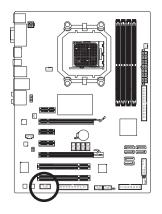

ピン番号	定義
1	TPA+
2	TPA-
3	GND
4	GND
5	TPB+
6	TPB-
7	電源 (12V)
8	電源 (12V)
9	ピンなし
10	GND



- USB ブラケットのケーブルを IEEE 1394a ヘッダに差し込まないでください。
- IEEE 1394a ブラケットを取り付ける前に、IEEE 1394a ブラケットが損傷しないように、必ず コンピュータのパワーをオフにし電源コードをコンセントから抜いてください。
- IEEE 1394a デバイスを接続するには、デバイスケーブルの一方の端をコンピュータに接続し、ケーブルのもう一方の端を IEEE 1394a デバイスに接続します。ケーブルがしっかり接続されていることをご確認ください。

18) LPT (パラレルポートヘッダ)

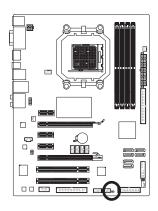
LPT ヘッダは、オプションの LPT ポートケーブルを介して 1 つのパラレルポートを提供します。オプション の LPT ポートケーブルを購入する場合は、地域の代理店にお問い合わせください。



t	ピン番号	定義	ピン番号	定義
	1	STB-	14	GND
	2	AFD-	15	PD6
	3	PD0	16	GND
	4	ERR-	17	PD7
	5	PD1	18	GND
	6	INIT-	19	ACK-
	7	PD2	20	GND
	8	SLIN-	21	BUSY
	9	PD3	22	GND
	10	GND	23	PE
	11	PD4	24	ピンなし
	12	GND	25	SLCT
	13	PD5	26	GND

19) COM (シリアルポートコネクタ)

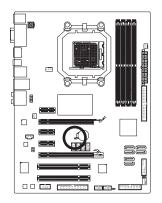
COM ヘッダは、オプションの COM ポートケーブルを介して 1 つのシリアルポートを提供します。オプションの COM ポートケーブルを購入する場合は、地域の代理店にお問い合わせください。



ピン番号	定義
1	NDCD -
2	NSIN
3	NSOUT
4	NDTR -
5	GND
6	NDSR -
7	NRTS -
8	NCTS -
9	NRI -
10	ピンなし

20) CI (シャーシ侵入ヘッダ)

このマザーボードには、シャーシカバーが取り外された場合に検出するシャーシ検出機能が搭載されています。この機能には、シャーシ侵入検出設計を施したシャーシが必要です。



1 👀

ピン番号	定義
1	信号
2	GND

21) CLR_CMOS (クリア CMOS ジャンパ)

このジャンパを使用して CMOS 値 (例えば、日付情報や BIOS 設定)を消去し、CMOS を工場出荷時の設定にリセットします。 CMOS 値を消去するには、 ジャンパキャップを 2 つのピンに取り付けて 2 つのピンを一時的にショートするか、 ドライバーのような金属製物体を使用して 2 つのピンに数秒間触れます。

● オープン: ノーマル

■ ショート: CMOS 値の消去

- CMOS 値常を消去する前に、常にコンピュータのパワーをオフにし、コンセントから電源コードを抜いてください。
- CMOS 値を消去した後コンピュータのパワーをオンにする前に、必ずジャンパからジャンパキャップを取り外してください。取り外さないと、マザーボードが損傷する原因となります。
- システムが再起動した後、BIOS セットアップに移動して工場出荷時の設定をロードするか (Load Optimized Defaults 選択) BIOS 設定を手動で設定します (BIOS 設定については、第2章「BIOS セットアップ」を参照してください)。

第2章 BIOS セットアップ

BIOS (基本入出力システム) は、マザーボードの CMOS にシステムのハードウェアパラメータを記録します。その主な機能には、システム起動時の POST (パワーオンオフテスト) の実行、システムパラメータの保存およびオペレーティングシステムのロードなどがあります。 BIOS には BIOS 起動プログラムが組み込まれており、ユーザーが基本システム設定を変更したり、特定のシステム機能をアクティブにできるようになっています。 パワーがオフの場合は、マザーボードのバッテリが CMOS に必要な電力を供給して CMOS の設定値を維持します。

BIOS セットアッププログラムにアクセスするには、パワーがオンになっているとき POST 中に <Delete> キーを押します。詳細な BIOS セットアップメニューオプションを表示するには、BIOS セットアッププログラムのメインメニューで <Ctrl> + <F1> を押します。

BIOS をアップグレードするには、GIGABYTE Q-Flash または @BIOS ユーティリティを使用します。

- Q-Flashで、オペレーティングシステムに入らずに、BIOS を素早く簡単にアップグレードまたはバックアップできます。
- @BIOS は Windows ベースのユーティリティで、インターネットから BIOS の最新バージョンを検索してダウンロードしたり、BIOS を更新したりします。

Q-Flash および @BIOS ユーティリティの使用に関する使用説明については、第4章「BIOS 更新ユーティリティ」を参照してください。

- BIOS フラッシュは危険なため、BIOS の現在のバージョンを使用しているときに問題が発生した場合、BIOS をフラッシュしないことをお勧めします。BIOS をフラッシュするには、注意して行ってください。BIOS の不適切なフラッシュは、システムの誤動作の原因となります。
- BIOS は POST 中にビープコードを鳴らします。ビープコードの説明については、第5章「トラブルシューティング」を参照してください。
- システムが不安定になったりその他の予期せぬ結果を引き起こすことがあるため、(必要でない場合) 既定値の設定を変更しないことをお勧めします。設定を不完全に変更すると、システムは起動できません。その場合、CMOS 値を消去しボードを既定値にリセットしてみてください。(CMOS 値を消去する方法については、この章の「ロード最適化既定値」セクションまたは第1章のバッテリCMOS ジャンパの消去の概要を参照してください。)

2-1 起動スクリーン

コンピュータが起動するとき、以下のスクリーンが表示されます。

A. LOGO スクリーン (既定値)

B. POST スクリーン

機能キー:

<TAB>: POST Screen

<Tab> キーを押すと、BIOS POST スクリーンが表示されます。システム起動時に BIOS POST スクリーンを表示するには、46 ページの Full Screen LOGO Show (フルスクリーン LOGO 表示) 表示アイテムの指示を参照してください。

: BIOS Setup/Q-Flash

<Delete> キーを押して BIOS セットアップに入るか、BIOS セットアップで Q-Flash ユーティリティにアクセスします。

<F9>: Xpress Recovery2

Xpress Recovery2 に入り、ドライバディスクを使用してハードドライブのデータをバックアップする場合、 <F9> キーを使用すれば POST 中に XpressRecovery2 にアクセスできるようになります。詳細については、第4章、「Xpress Recovery2」を参照してください。

<F12>: Boot Menu

起動メニューにより、BIOS セットアップに入ることなく最初のブートデバイスを設定できます。ブートメニューで、上矢印キー <↑> または下矢印キー <↓> を使用して最初の起動デバイスを選択し、次に <Enter> を押して受け入れます。 起動メニューを終了するには、〈Esc〉 を押します。 システムは、 起動メニューで設定されたデバイスから直接起動します。

注:起動メニューの設定は、一度だけ有効になります。システムが再起動した後でも、デバイスの起動順序はBIOS セットアップ設定に基づいた順序になっています。必要に応じて、最初の起動デバイスを変更するために起動メニューに再びアクセスすることができます。

<End>: Q-Flash

<End>キーを押すと、BIOS セットアップに入らずに直接 Q-Flash ユーティリティにアクセスできます。

2-2 メインメニュー

BIOS セットアッププログラムに入ると、(以下に表示されたように)メインメニューがスクリーンに表示されます。矢印キーでアイテム間を移動し、<Enter>を押してアイテムを受け入れるか、サブメニューに入ります。

(サンプルの BIOS バージョン: E3)

_	CMOS Setup Utility-Copyright (C) 1984-2008 Award Software					
	•	MB Intelligent Tweaker(M.I.T.)		Load Fail	-Safe Defaults	
Ш	•	Standard CMOS Features		Load Opt	imized Defaults	
Ш	•	Advanced BIOS Features		Set Super	visor Password	
Ш	•	Integrated Peripherals		Set User I	Password	
Ш	•	Power Management Setup		Save & E	xit Setup	
Ш	•	PnP/PCI Configurations		Exit With	out Saving	
Ш	•	PC Health Status				
	ESC	: Quit	↑↓→←: Select I	tem	F11: Save CMOS to BIOS	
	F8: 0	Q-Flash	F10: Save & Exi	t Setup	F12: Load CMOS from BIOS	
			Change CPU's	Clock & Voltage		

BIOS セットアッププログラムの機能キー

<↑><↓>< ←>< →>	選択バーを移動してアイテムを選択します
<enter></enter>	コマンドを実行するか、サブメニューに入ります
<esc></esc>	メインメニュー:BIOS セットアッププログラムを終了します
	サブメニュー: 現在のサブメニューを終了します
<page up=""></page>	数値を多くするか、変更します
<page down=""></page>	数値を少なくするか、変更します
<f1></f1>	機能キーの説明を表示します
<f2></f2>	カーソルを右のアイテムヘルプブロックに移動します (サブメニューのみ)
<f5></f5>	現在のサブメニューに対して前のBIOS設定を復元します
<f6></f6>	現在のサブメニューに対して、BIOS のフェールセーフ既定値設定をロードします
<f7></f7>	現在のサブメニューに対して、BIOSの最適化既定値設定をロードします
<f8></f8>	Q-Flash ユーティリティにアクセスします
<f9></f9>	
<f10></f10>	すべての変更を保存し、BIOS セットアッププログラムを終了します
<f11></f11>	CMOS を BIOS に保存します
<f12></f12>	BIOS から CMOS をロードします

メインメニューのヘルプ

ハイライトされたセットアップオプションのオンスクリーン説明は、メインメニューの最下行に表示されます。

サブメニューヘルプ

サブメニューに入っている間、<F1> を押してメニューで使用可能な機能キーのヘルプスクリーン (一般ヘルプ) を表示します。<Esc> を押してヘルプスクリーンを終了します。各アイテムのヘルプは、サブメニューの右側のアイテムヘルプブロックにあります。

- メインメニューまたはサブメニューに目的の設定が見つからない場合、<Ctrl>+<F1>を押して 詳細オプションにアクセスします。
- システムが安定しないときは、Load Optimized Defaults アイテムを選択してシステムをその既 定値に設定します。
- この章で説明したBIOS セットアップメニューは、参照にすぎずBIOS のバージョンによって異なる場合があります。

■ <F11> および <F12> キーの機能 (メインメニューの場合のみ)

▶ F11 : Save CMOS to BIOS

この機能により、現在の BIOS 設定をプロファイルに保存できます。最大 8 つのプロファイル (プロファイル 1-8) を作成し、各プロファイルに名前を付けることができます。まず、プロファイル名を入力し(既定値のプロファイル名を消去するには、SPACE キーを使用します)、次に <Enter> を押して完了します。

▶ F12 : Load CMOS from BIOS

システムが不安定になり、BIOS の既定値設定をロードした場合、この機能を使用して前に作成されたプロファイルから BIOS 設定をロードすると、BIOS 設定を設定し直す煩わしさを避けることができます。まず、ロードするプロファイルを選択し、次に <Enter> を押して完了します。

■ MB Intelligent Tweaker (M.I.T.)

このメニューを使用してクロック、CPUの周波数および電圧、メモリなどを設定します。

■ Standard CMOS Features

このメニューを使用してシステムの日時、ハードドライブのタイプ、フロッピーディスクドライブのタイプ、 およびシステム起動を停止するエラーのタイプを設定します。

Advanced BIOS Features

このメニューを使用してデバイスの起動順序、CPUで使用可能な拡張機能、および1次ディスプレイアダプタを設定します。

■ Integrated Peripherals

このメニューを使用して IDE、SATA、USB、統合オーディオ、および統合 LAN などのすべての周辺機器を設定します。

■ Power Management Setup

このメニューを使用して、すべての省電力機能を設定します。

■ PnP/PCI Configurations

このメニューを使用して、システムの PCI および PnP リソースを設定します。

■ PC Health Status

このメニューを使用して自動検出されたシステム/CPU 温度、システム電圧およびファン速度に関する情報を表示します。

■ Load Fail-Safe Defaults

フェールセーフ既定値はもっとも安定した、最適パフォーマンスのシステム操作を実現する工場出荷 時の設定です。

■ Load Optimized Defaults

最適化既定値は、最適パフォーマンスのシステム操作を実現する工場出荷時設定です。

Set Supervisor Password

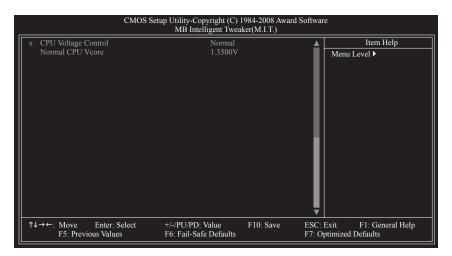
パスワートの変更、設定、または無効化。この設定により、システムとBIOS セットアップへのアクセスを制限できます。

■ Set User Password

パスワードの変更、設定、または無効化。この設定により、システムと BIOS セットアップへのアクセスを制限できます。

ユーザーパスワードは、BIOS 設定を表示するだけで変更は行いません。


■ Save & Exit Setup


BIOS セットアッププログラムで行われたすべての変更を CMOS に保存し、BIOS セットアップを終了します。(<F10> を押してもこのタスクを実行できます。)

■ Exit Without Saving

すべての変更を破棄し、前の設定を有効にしておきます。確認メッセージに対して <Y> を押すと、 BIOS セットアップが終了します。(<Esc> を押してもこのタスクを実行できます。)

2-3 MB Intelligent Tweaker (M.I.T.)

- ・ システムがオーバークロック/過電圧設定で安定して作動しているかどうかは、システム全体の設定によって異なります。オーバークロック/過電圧を間違って実行すると CPU、チップセット、またはメモリが損傷し、これらのコンポーネントの耐用年数が短くなる原因となります。このページは上級ユーザー向けであり、システムの不安定や予期せぬ結果を招く場合があるため、既定値設定を変更しないことをお勧めします。(設定を不完全に変更すると、システムは起動できません。その場合、CMOS 値を消去しポードを既定値にリセットしてください)。
- System Voltage Optimized 項目が赤で点滅するとき、System Voltage Control 項目を Auto に設定してシステム電圧設定を最適化することをお勧めします。
- (注1) この機能をサポートするメモリモジュールを取り付けている場合のみ、この項目が表示されます。
- (注 2) このアイテムは、この機能をサポートする CPU を取り付けた場合のみ表示されます。

→ DRAM Configuration

DDRII Timing Items	[Auto]	SPD	Auto	Item Help
x CAS# latency	Auto	5T	5T	Menu Level ▶
x RAS to CAS R/W Delay	Auto	5T	5T	
x Row Precharge Time	Auto	5T	5T	
x Minimum RAS Active Time	Auto	15T	15T	
x 1T/2T Command Timing	Auto			
x TwTr Command Delay	Auto	3T	3T	
x Trfc0 for DIMM1	Auto	127ns	127ns	
x Trfc2 for DIMM2	Auto			
x Trfc1 for DIMM3	Auto			
x Trfc3 for DIMM4	Auto			
x Write Recovery Time	Auto	5T	5T	
x Precharge Time	Auto	3T	3T	
x Row Cycle Time	Auto	21T	21T	
x RAS to RAS Delay	Auto	3T	3T	

→ DDRII Timing Items

Manual にすると、以下の DDRII タイミング項目をすべて構成できます。 オプション: Auto(既定値)、Manual。

□ CAS# latency

オプション: Auto(既定値)、3T~7T。

オプション: Auto(既定値)、3T~6T。

→ Row Precharge Time

オプション: Auto(既定値)、3T~6T。

→ Minimum RAS Active Time

→ Minimum RAS Ac

オプション: Auto(既定値)、5T~18T。

□ 1T/2T Command Timing

オプション: Auto(既定値)、1T、2T。

TwTr Command Delay

オプション: Auto(既定値)、1T~3T。

→ Trfc0 for DIMM1

オプション: Auto(既定値)、75ns、105ns、127.5ns、195ns、327.5ns。

→ Trfc2 for DIMM2

オプション: Auto(既定値)、75ns、105ns、127.5ns、195ns、327.5ns。

→ Trfc1 for DIMM3

オプション: Auto(既定値)、75ns、105ns、127.5ns、195ns、327.5ns。

→ Trfc3 for DIMM4

オプション: Auto(既定値)、75ns、105ns、127.5ns、195ns、327.5ns。

→ Write Recovery Time

オプション: Auto(既定値)、3T~6T。

Precharge Time

オプション: Auto(既定値)、2T、3T。

☐ Row Cycle Time

オプション: Auto(既定値)、11T~26T。

RAS to RAS Delay

オプション: Auto(既定値)、2T~5T。

→ HT Link Frequency

CPU とチップセット間で HT Link 用の周波数を手動で設定します。

▶ Auto BIOS は、HT Link Frequency を自動的に調整します。(既定値)

▶ 200 MHz~2.6 GHz HT Link Frequency を 200 MHz~2.6 GHz に設定します。

→ VGA Core Clock control

VGA Core クロックの制御の Enables/Disables を切り替えます。

→ VGA Core Clock (Mhz)

VGA Core クロックを手動で設定します。調整可能な範囲は 200 MHz ~ 2000 MHz の間です。 VGA Core Clock control オプションが有効になっている場合にのみ、この項目を設定可能です。

EPP メモリが取り付けられているとき、EPP モードの有効/無効を切り替えます。Auto は、EPP メモリの EPP モードを有効にしてパフォーマンスの向上を図ります。(既定値: Disabled)

□ EPP Voltage Control (注 1)

EPP メモリ電圧を構成します。

Normal

BIOS でメモリ電圧設定を最適化します。(既定値)

▶ By EPP

EPP メモリの SPD データに従って、メモリ電圧を設定します。

→ CPU Clock Ratio

取り付けた CPU のクロック比を変更します。調整可能範囲は、使用される CPU によって異なります。

○ CPU NorthBridge Freg. (注2)

取り付けた CPU のノースブリッジコントローラ周波数を変更します。調整可能範囲は、使用される CPU によって異なります。

□ CPU Host Clock Control

CPU ホストクロックの制御の Enables/Disables を切り替えます。Auto (既定値) では、BIOS が CPU ホスト周波数を自動的に調整します。Manual にすると、以下の CPU Frequency (Mhz) 項目を構成できるようになります。注:オーバークロックの後システムが起動に失敗した場合、20 秒待ってシステムを自動的に再起動するか、または CMOS 値を消去してボードを既定値にリセットします。

□ CPU Frequency (MHz)

CPU ホスト周波数を手動で設定します。

Important CPU 仕様に従って CPU 周波数を設定することを強くお勧めします。

→ PCIE Clock (MHz)

PCIe クロック周波数を手動で設定します。調整可能な範囲は 100 MHz~200 MHz の間です。 Auto は PCIe クロック周波数を標準の 100 MHz に設定します。(既定値: Auto)

(注1) この機能をサポートするメモリモジュールを取り付けている場合のみ、この項目が表示されます。

(注 2) このアイテムは、この機能をサポートする CPU を取り付けた場合のみ表示されます。

□ Set Memory Clock

メモリクロックを手動で設定するかどうかを決定します。Autoでは、BIOS は必要に応じてメモリクロックを自動的に設定します。Manual にすると、以下の電圧コントロール項目をすべて構成できます。 (既定値: Auto)

→ Memory Clock

Set Memory Clock が Manual に設定されているときのみ、このオプションを構成できます。 AM2 CPU を使用しているとき:

▶ DDR 400	Memory Clock を DDR 400 に設定します。
▶ DDR 533	Memory Clock を DDR 533 に設定します。
▶ DDR 667	Memory Clock を DDR 667 に設定します。
▶ DDR 800	Memory Clock を DDR 800 に設定します。

AM2+ CPU を使用しているとき:

→ X2.00	Memory Clock を X2.00 に設定します。
▶ X2.66	Memory Clock を X2.66 に設定します。
→ X3.33	Memory Clock を X3.33 に設定します。
→ X4.00	Memory Clock を X4.00 に設定します。
→ X5.33	Memory Clock を X5.33 に設定します。

******* System Voltage Optimized *******

System Voltage Control

システム電圧を手動で設定するかどうかを決定します。Autoでは、BIOS は必要に応じてシステム 電圧を自動的に設定します。Manual にすると、以下の電圧コントロール項目をすべて構成できます。(既定値: Auto)

→ DDR2 Voltage Control

メモリ電圧を設定します。

- ▶ Normal 必要に応じて、メモリ電圧を供給します。(既定値)
- ▶ +0.1V~+0.5V 0.1V~0.5Vまで0.1V単位でメモリ電圧を増加します。

NorthBridge Volt Control

ノースブリッジ電圧を設定します。

- ▶ Normal 必要に応じて、ノースブリッジ電圧を供給します。(既定値)
- ▶ +0.1V~+0.3V 0.1V~0.3V まで 0.1V 単位でノースブリッジを増加します。

SouthBridge Volt Control

サウスブリッジ電圧を設定します。

- ▶ Normal 必要に応じて、サウスブリッジ電圧を供給します。(既定値)
- ▶ +0.1V~+0.3V 0.1V~0.3V まで 0.1V 単位でサウスブリッジを増加します。

○ CPU NB VID Control (注)

CPU ノースブリッジ電圧を設定します。Normal は、必要に応じて CPU ノースブリッジを設定します。 (既定値: Normal)

注: CPU ノースブリッジ電圧を上げると、CPU が損傷したり、CPU の耐用年数が減少する原因となります。

CPU Voltage Control

CPU 電圧を設定します。Normal は、必要に応じて CPU 電圧を設定します。調整可能範囲は、取り付ける CPU によって異なります。(既定値: Normal)

注: CPU 電圧電圧を上げると、CPU が損傷したり、CPU の耐用年数が減少する原因となります。

→ Normal CPU Vcore

CPU のノーマルの動作圧力を表示します。

(注) このアイテムは、この機能をサポートする CPU を取り付けた場合のみ表示されます。

2-4 Standard CMOS Features

CMOS Set	up Utility-Copyright (C) 1984-2008 Award Softw Standard CMOS Features	rare
Date (mm:dd:yy)	Tue, Nov 11 2008	Item Help
Time (hh:mm:ss)	18:25:04	Menu Level ▶
▶ IDE Channel 0 Master	[None]	·
DE Channel 0 Slave	[None]	·
► IDE Channel 1 Master ► IDE Channel 1 Slave	[None] [None]	.
IDE Channel 2 Master	[None]	.
IDE Channel 2 Slave	[None]	·
▶ IDE Channel 3 Master	[None]	·
▶ IDE Channel 3 Slave	[None]	.
Drive A	[1.44M, 3.5"]	·
Floppy 3 Mode Support	[Disabled]	.
		.
Halt On	[All, But Keyboard]	·
Base Memory	640K	.
Extended Memory	1790M	·
↑↓→←: Move Enter: Select		C: Exit F1: General Help
F5: Previous Values	F6: Fail-Safe Default F7:	Optimized Defaults

→ Date

システムの日付を設定します。日付形式は週 (読み込み専用)、月、日および年です。目的の フィールドを選択し、上または下矢印キーを使用して日付を設定します。

システムの時刻を設定します。例:1 p.m. は 13:0:0 です。目的のフィールドを選択し、上または下 矢印キーを使用して時刻を設定します。

□ IDE Channel 0, 1 Master/Slave

▶ IDE HDD Auto-Detection

<Enter>を押して、このチャンネルの IDE/SATA デバイスのパラメータを自動検出します。

▶ IDE Channel 0, 1 Master/Slave

以下の3つの方法のいずれかを使用して、IDE/SATAデバイスを設定します:

CHS、LBA、Large です。

POST 中に、BIOS により IDE/SATA デバイスが自動的に検出されます。(既定値) IDE/SATA デバイスが使用されていない場合、このアイテムを None に設定す None ると、システムは POST 中にデバイスの検出をスキップしてシステムの起動を 高速化します。 ハードドライブのアクセスモードが CHS に設定されているとき、ハードドライブ Manual の仕様を手動で入力します。 ハードドライブのアクセスモードを設定します。オプションは、Auto (既定値)、 ▶ Access Mode

□ IDE Channel 2, 3 Master/Slave

▶ IDE Auto-Detection

<Enter>を押して、このチャンネルの IDE/SATA デバイスのパラメータを自動検出します。

▶ Extended IDE Drive 以下の2つの方法のいずれかを使用して、IDE/SATA デバイスを設定します: Auto POST 中に、BIOS により IDE/SATA デバイスが自動的に検出されます。(既定値)

IDE/SATA デバイスが使用されていない場合、このアイテムを None に設定す None ると、システムは POST 中にデバイスの検出をスキップしてシステムの起動を 高速化します。

▶ Access Mode ハードドライブのアクセスモードを設定します。オプションは、Auto (既定値)、

Large です。

以下のフィールドには、お使いのハードドライブの仕様が表示されます。パラメータを手動で入力する 場合、ハードドライブの情報を参照してください。

現在取り付けられているハードドライブのおおよその容量。 ▶ Capacity

▶ Cylinder シリンダー数。 Head ヘッド数。

▶ Precomp 事前補正の書き込みシリンダ。

▶ Landing Zone ランディングゾーン。

▶ Sector セクタ数。

→ Drive A

システムに取り付けられているフロッピーディスクドライブのタイプを選択します。フロッピーディスクドラ イブを取り付けていない場合、このアイテムを None に設定します。オプションは、None (既定値)、 360K/5.25"、1.2M/5.25"、720K/3.5"、1.44M/3.5"、2.88M/3.5"です。

取り付けられたフロッピーディスクドライブが3モードのフロッピーディスクドライブであるか、日本の標準 フロッピーディスクドライブであるかを指定します。オプションは、Disabled (既定値)、ドライブ A です。

→ Halt On

システムが POST 中にエラーに対して停止するかどうかを決定します。

No Errors システム起動は、エラーに対して停止しません。

→ All Errors BIOSは、システムが停止する致命的でないエラーを検出します。 ▶ All, But Keyboard キーボードエラー以外のエラーでシステムは停止します。(既定値) ▶ All, But Diskette フロッピーディスクドライブエラー以外のエラーでシステムは停止します。 All, But Disk/Key

キーボードエラー、またはフロッピーディスクドライブエラー以外のエラーでシス

テムは停止します。

Memory

これらのフィールドは読み込み専用で、BIOS POSTで決定されます。

コンベンショナルメモリとも呼ばれています。一般に、640 KB は MS-DOS オペ ▶ Base Memory

レーティングシステム用に予約されています。

▶ Extended Memory 拡張メモリ量。

2-5 Advanced BIOS Features

	CMOS S	etup Utility-Copyright (C) 1984-2008 Advanced BIOS Features	Award Software
	Internal Graphics Mode	[UMA]	Item Help
	UMA Frame Buffer Size	[Auto]	Menu Level ▶
	Surround View	Disabled	mena Berei y
	Onboard VGA output connect	[Auto]	
	Init Display First	[PCI Slot]	
	AMD C1E Support	[Software SMI]	
	Virtualization	[Disabled]	
	Patch AMD TLB Erratum (注)	[Enabled]	
	AMD K8 Cool&Quiet control	[Auto]	
•	Hard Disk Boot Priority	[Press Enter]	
	First Boot Device	[Floppy]	
	Second Boot Device	[Hard Disk]	
	Third Boot Device	[CDROM]	
	Password Check	[Setup]	
	HDD S.M.A.R.T. Capability	[Disabled]	
	Away Mode	[Disabled]	
	Full Screen LOGO Show	[Enabled]	
↑↓	→ ←: Move Enter: Select	+/-/PU/PD: Value F10: Say	e ESC: Exit F1: General Help
	F5: Previous Values	F6: Fail-Safe Defaults	F7: Optimized Defaults

オンボードグラフィックスコントローラに対してシステムメモリを割り当てるかどうかを決定します。

▶ Disabled オンボードグラフィックスコントローラを Disables にします。

▶ UMA システムメモリからオンボードグラフィックスコントローラに対してメモリを割り当てます。 (既定値)

UMA Frame Buffer Size

フレームバッファサイズは、オンボードグラフィックスコントローラに対してのみ割り当てられたシステムメモリの合計量です。例えば、MS-DOS はディスプレイに対してこのメモリのみを使用します。オプション: Auto (既定値)、128MB、256MB、512MB。

→ Surround View

Surround View機能の Enables/Disables を切り替えます。ATI グラフィックスカードが取り付けられている場合のみ、このオプションを構成できます。(既定値: Disabled)

Onboard VGA output connect

D-SUB/DVI-D または D-SUB/HDMI から、オンボード VGA 出力のグラフィックスディスプレイを指定します。

▶ Auto BIOS は、ディスプレイデバイスが接続されているポートに従って、D-SUB/DVI-Dまたは D-SUB/HDMI から出力用のメモリディスプレイポートを自動的に決定します。 (既定値)

▶ D-SUB/DVI グラフィックスディスプレイとして D-SUB/DVI-D を設定します。

▶ D-SUB/HDMI グラフィックスディスプレイとして D-SUB/HDMI を設定します。

□ Init Display First

取り付けられた PCI グラフィックスカー ドまたは PCI Express グラフィックスカー ドから、モニタディスプレイの最初の表示を指定します。

▶ PCI Slot 最初のディスプレイとして PCI グラフィックスカードを設定します。(既定値)

▶ OnChipVGA 最初のディスプレイとしてオンボード VGA を設定します

(注) このアイテムは、この機能をサポートする CPU を取り付けた場合のみ表示されます。

▶ PEG 最初のディスプレイとして、PCIEX16 1 スロットで PCI Express グラフィックカードを

設定します。

▶ PEG1 最初のディスプレイとして、PCIEX4_1 スロットで PCI Express グラフィックカードを設

定します。

→ AMD C1E Support

システムが一次停止状態のとき、C1E CPU 省電力機能の有効/無効を切り替えます。Software SMI に設定されているとき、CPU コア周波数と電圧はシステムの停止状態の間削減され、消費電力を抑えます。(既定値: Software SMI)

→ Virtualization

Virtualization では、プラットフォームが独立したパーティションで複数のオペレーティングシステムとアプリケーションを実行します。仮想化では、1 つのコンピュータシステムが複数の仮想化システムとして機能できます。(既定値: Disabled)

→ Patch AMD TLB Erratum (注)

Patch AMD TLB Erratum 機能の Enables/Disables を切り替えます。(既定値: Enabled)

→ AMD K8 Cool&Quiet control

▶ Auto AMD Cool'n'Quiet ドライブでは CPU と VID をダイナミックに調整し、コンピュータから

の熱出力とその消費電力を減少します。(既定値)

▶ Disabled この機能を Disables にします。

Hard Disk Boot Priority

取り付けられたハードドライブからオペレーティングシステムをロードする順序が指定されます。上または下矢印キーを使用してハードドライブを選択し、次にプラスキー <+> (または <PageUp>) またはマイナスキー <-> (または <PageDown>) を押してリストの上または下に移動します。このメニューを終了するには、<ESC>を押します。

→ First/Second/Third Boot Device

使用可能なデバイスから起動順序を指定します。上または下矢印キーを使用してデバイスを選択し、<Enter> を押して受け入れます。オプションは、フロッピー、LS120、ハードディスク、CDROM、ZIP、USB-FDD、USB-ZIP、USB-CDROM、USB-HDD、Legacy LAN、Disabled です。

Password Check

パスワードは、システムが起動するたびに必要か、または BIOS セットアップに入るときのみ必要かを指定します。このアイテムを設定した後、BIOS メインメニューの **Set Supervisor/User Password** アイテムの下でパスワードを設定します。

▶ Setup パスワードは BIOS セットアッププログラムに入る際にのみ要求されます。(既定値)▶ System パスワードは、システムを起動したり BIOS セットアッププログラムに入る際に要求さ

れます。

→ HDD S.M.A.R.T. Capability

ハードドライブの S.M.A.R.T. (セルフモニタリング・アナリシス・アンド・リポーティング・テクノロジー) 機能 の Enables/Disables を切り換えます。この機能により、システムはハードドライブの読み込み/書き込みエラーを報告し、サードパーティのハードウェアモニタユーティリティがインストールされているとき、警告を発行することができます。(既定値: Disabled)

→ Away Mode

Windows XP Media Center オペレーティングシステムで Away Mode の Enables/Disables を切り替えます Away Mode により、システムはオフになっているように見える低出力モードで入っている間に、実行されていないタスクをサイレントに実行します。(既定値: Disabled)

→ Full Screen LOGO Show

システム起動時に、GIGABYTE ロゴを表示するかどうかを決定します。Disabled では、標準のPOSTメッセージが表示されます。(既定値: Enabled)

(注) このアイテムは、この機能をサポートする CPU を取り付けた場合のみ表示されます。

2-6 Integrated Peripherals

OnChip IDE Channel	[Enabled]	Item Help
OnChip SATA Controller	[Enabled]	Menu Level ▶
OnChip SATA Type	[Native IDE]	Wicha Ecvery
OnChip SATA Port4/5 Type	IDE	
Onboard Audio Function	[Enabled]	
OnChip USB Controller	[Enabled]	
USB EHCI Controller	[Enabled]	
USB Keyboard Support	[Disabled]	
USB Mouse Support	[Disabled]	
Legacy USB storage detect	[Enabled]	
Onboard 1394 Function	[Enabled]	
Onboard LAN Function	[Enabled]	
SMART LAN	[Press Enter]	
Onboard LAN Boot ROM	[Disabled]	
Onboard Serial Port 1	[3F8/IRQ4]	
Onboard Parallel Port	[378/IRQ7]	
Parallel Port Mode	[SPP]	
K ECP Mode Use DMA		

OnChip IDE Channel

統合された IDE コントローラの Enables/Disables を切り替えます。(既定値: Enabled)

OnChip SATA Controller

統合された SATA コントローラの Enables/Disables を切り替えます。(既定値: Enabled)

OnChip SATA Type (SATA2_0~SATA2_3 connectors)

統合された SATA コントローラの動作モードを構成します。

▶ Native IDE SATA コントローラが Native IDE モードで動作します。(既定値)

ネイティブモードをサポートするオペレーティングシステムをインストールする場

合、Native IDE モードを Enables にします。

▶ RAID SATA コントローラに対して RAID を Enables にします。

▶ AHCI SATAコントローラを AHCI モードに構成します。 Advanced Host Controller

Interface (AHCI) は、ストレージドライバが Native Command Queuing およびホットプラグなどのアドバンストシリアル ATA 機能を Enables にできるインター

フェイス仕様です。

OnChip SATA Port4/5 Type (SATA2_4/SATA2_5 connectors)

OnChip SATA Type が RAID または AHCI に設定されているときのみ、このオプションを設定できます。 統合された SATA2_4/SATA2_5 コネクタの動作モードを構成します。

▶ IDE SATA コントローラに対して RAID を Disables にし、SATA コントローラを PATA

モードに構成します。(既定値)

▶ As SATA Type モードは、OnChip SATA Type 設定によって異なります。

Onboard Audio Function

オンボードオーディオ機能の Enables/Disables を切り替えます。(既定値: Enabled) オンボードオーディオを使用する代わりに、サードパーティ製アドインオーディオカードをインストールする場合、この項目を Disabled に設定します。

OnChip USB Controller

統合された USB 1.1 コントローラの Enables/Disables を切り換えます。(既定値: Enabled)

→ USB EHCI Controller

統合された USB 2.0 コントローラの Enables/Disables を切り換えます。(既定値: Enabled)

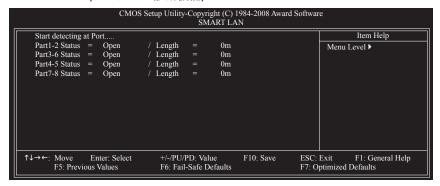
USB Keyboard Support

MS-DOS で USB キーボードを使用できるようにします。(既定値: Disabled)

→ USB Mouse Support

MS-DOS で USB マウスを使用できるようにします。(既定値: Disabled)

 ☐ Legacy USB storage detect


POST の間 USB フラッシュドライブや USB ハードドライブを含め、USB ストレージデバイスを検出するかどうかを決定します。(既定値: Enabled)

Onboard 1394 Function

オンボード IEEE 1394 機能の Enables/Disables を切り換えます。(既定値: Enabled)

Onboard LAN Function

オンボード LAN 機能の Enables/Disables を切り換えます。(既定値: Enabled) オンボード LAN を使用する代わりにサードパーティ製のアドインネットワークカードを取り付ける場合、このアイテムを Disabled に設定します。

このマザーボードは、付属の LAN ケーブルのステータスを検出するために設計されたケーブル診断機能を 組み込んでいます。この機能は、配線問題を検出し、障害またはショートまでのおおよその距離を報告し ます。LAN ケーブルの診断については、以下の情報を参照してください:

→ LAN ケーブルが接続しているとき...

LAN ケーブルがマザーボードに接続されていない場合、ワイヤの4つのペアの Status フィールドがすべて表示されます。Open および Length フィールドは、上の図で示すように 0m を示しています。

Gigabit ハブまたは 10/100 Mbps ハブに接続された LAN ケーブルでケーブル問題が検出されない場合、以下のメッセージが表示されます:

Start detecting at Port..... Link Detected --> 100Mbps Cable Length= 30m ▶ Link Detected 伝送速度を表示します

▶ Cable Length 接続された LAN ケーブルのおおよその長さを表示します。

注: Gigabit ハブは MS-DOS モードでは 10/100 Mbps の速度でのみ作動します。Windows では、または LAN Boot ROM がアクティブになっているときは 10/100/1000 Mbps の標準速度で作動します。

☆ ケーブル問題が発生したとき...

ワイヤの特定のペアでケーブル問題が発生した場合、Status フィールドには Short と表示され、表示された長さが障害またはショートまでのおおよその距離になります。

例: Part1-2 Status = Short / Length = 2m

説明:障害またはショートは、Part 1-2 の約 2m で発生しました。

注: Part 4-5 と Part 7-8 は 10/100 Mbps 環境では使用されないため、その **Status** フィールドは **Open** と表示され、表示された長さが接続された LAN ケーブルのおおよその長さとなります。

→ Onboard LAN Boot ROM

オンボード LAN チップに統合された起動 ROM をアクティブにするかどうかを決定します。(既定値: Disabled)

Onboard Serial Port 1

最初のシリアルポートのEnables/Disablesを切り換え、そのベース I/O アドレスと対応する割り込みを 指定します。操作は、Auto、2F8/IRQ3、3F8/IRQ4 (既定値)、3E8/IRQ4、2E8/IRQ3、Disabled です。

Onboard Parallel Port

オンボードパラレルポート (LPT) のEnables/Disablesを切り換え、そのベース I/O アドレスと対応する割り込みを指定します。オプションは、378/IRQ7 (既定値)、278/IRQ5、3BC/IRQ7、Disabled です。

Parallel Port Mode

オンボードパラレル (LPT) ポートのオペレーティングモードを選択します。オプションは、SPP (標準パラレルポート)(既定値)、EPP (拡張パラレルポート)、ECP (拡張機能ポート)、ECP+EPP です。

→ ECP Mode Use DMA

ECP モードで LPT ポートに対してDMAチャンネルを選択します。Parallel Port Mode が ECP または ECP+EPP に設定されている場合のみ、この項目を設定できます。オプション: 3 (既定値)、1。

2-7 Power Management Setup

CMOS S	Setup Utility-Copyright (C) 1984-2008 Award Power Management Setup	d Software
ACPI Suspend Type Soft-Off by Power button USB Wake Up from S3 Modem Ring Resume PME Event Wake Up HPET Support (EP) Power On By Mouse Power On By Keyboard X KB Power ON Password AC Back Function Power-On by Alarm X Date (of Month) X Resume Time (hh:nmm:ss)	[S3(STR)] [Instant-off] [Enabled] [Disabled] [Enabled] [Enabled] [Disabled] [Disabled] Enter [Soft-Off] [Disabled] Everyday 0:0:0	Item Help Menu Level ▶
↑↓→←: Move Enter: Select F5: Previous Values	+/-/PU/PD: Value F10: Save F6: Fail-Safe Defaults	ESC: Exit F1: General Help F7: Optimized Defaults

→ ACPI Suspend Type

システムがサスペンドに入るとき、ACPI スリープ状態を指定します。

▶ S1(POS) システムは、ACPI S1 (パワーオンサスペンド) スリープ状態に入ります。S1 ス

リープ状態で、システムはサスペンド状態に入っていると表示され、低出力

モードに留まります。システムは、いつでも復元できます。

▶ S3(STR) システムは、ACPI S3 (RAM にサスペンド) スリープ状態に入ります。S3 スリー

プ状態で、システムはオフとして表示され、S1 状態の場合より電力を消費し

ません。呼び起こしデバイスまたはイベントにより信号を送られると、システム

は停止したときの状態に戻ります。(既定値)

Soft-Off by Power button

パワーボタンを使用して、MS-DOS モードでコンピュータをオフにする方法を設定します。

▶ Delay 4 Sec. パワーボタンを 4 秒間押し続けると、システムはオフになります。パワーボタン

を押して4秒以内に放すと、システムはサスペンドモードに入ります。

▶ Instant-Off
パワーボタンを押すと、システムは直ちにオフになります。(既定値)

→ USB Wake Up from S3

USB デバイスからの呼び起こし信号により、ACPI S3 スリープ状態からシステムを呼び起こします。 (既定値: Enabled)

Modem Ring Resume

呼び起こし機能をサポートするモデムからの呼び起こし信号により、ACPI スリープ状態からシステムを呼び起こします。(既定値:Disabled)

(注) Windows® Vista® オペレーティングシステムでのみサポートさます。

→ PME Event Wake Up

PCI または PCIe デバイスからの呼び起こし信号により、ACPI スリープ状態からシステムを呼び起こします。注:この機能を使用するには、+5VSB リード線に少なくとも 1A を提供する ATX 電源装置が必要です。(既定値: Enabled)

→ HPET Support (注)

Windows® Vista® オペレーティングシステムに対して HPET (高精度イベントタイマー) の Enables/ Disables を切り換えます。(既定値: Enabled)

Power On By Mouse

PS/2 キーボード呼び起こしイベントにより、システムをオンにします。

注: この機能を使用するには、+5VSBリードで1A以上を提供するATX電源装置が必要です。

▶ Disabled この機能を Disables にします。(既定値)

▶ Password PS/2 マウスの左ボタンをダブルクリックしてシステムをオンにします。

Power On By Keyboard

PS/2 キーボード呼び起こしイベントにより、システムをオンにします。

注:+5VSBリード線に少なくとも 1A を提供する ATX 電源装置が必要です。

▶ Disabled この機能を Disables にします。(既定値)

▶ Password 1~5 文字でシステムをオンスするためのパスワードを設定します。▶ Any KEY キーボードのどれかのキーを押してシステムをオンにします。

▶ Keyboard 98 Windows 98 キーボードの POWER ボタンを押すと、システムがオンになります。

Power On by Keyboard が Password に設定されているとき、パスワードを設定します。このアイテムで <Enter> を押して 5 文字以内でパスワードを設定し、<Enter> を押して受け入れます。システムをオンにするには、パスワードを入力し <Enter> を押します。

注:パスワードをキャンセルするには、このアイテムで <Enter> を押します。パスワードを求められたとき、パスワードを入力せずに <Enter> を再び押すとパスワード設定が消去されます。

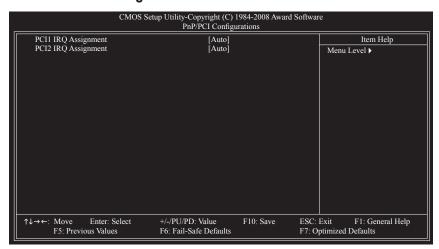
AC Back Function

AC 電力が失われたときから電力を回復した後のシステムの状態を決定します。

▶ Soft-Off AC 電力を回復した時点でも、システムはオフになっています。(既定値)

▶ Full-On AC 電力を回復した時点で、システムはオンになります。

▶ Memory AC 電力が回復した時点で、システムは電力を失う直前の状態に戻ります。


Power-On by Alarm

希望するときにシステムのパワーをオンにするかどうかを決定します。(既定値: Disabled) 有効になっている場合、日付と時刻を以下のように設定してください:

- ▶ Date (of Month): 毎日または指定された日のそれぞれの時刻に、システムのパワーをオンにします。
- ▶ Resume Time (hh: mm: ss): システムのパワーを自動的にオンにする時刻を設定します。

注:この機能を使用しているとき、不適切にオペレーティングシステムから遮断したりAC 電源からコードを抜かないでください。そうでないと、設定は有効になりません。

2-8 PnP/PCI Configurations

PCI1 IRQ Assignment

▶ Auto BIOS は IRQ を最初の PCI スロットに自動的に割り当てます。

(既定値)

▶ 3,4,5,7,9,10,11,12,14,15
IRQ 3,4,5,7,9,10,11,12,14,15 を最初の PCI スロットに割り当てます。

→ PCI2 IRQ Assignment

▶ Auto BIOS は IRQ を 2 番目の PCI スロットに自動的に割り当てます。

(既定値)

▶ 3,4,5,7,9,10,11,12,14,15
IRQ 3,4,5,7,9,10,11,12,14,15 を 2 番目の PCI スロットに割り当てます。

2-9 PC Health Status

Reset Case Open Status	[Disabled]	Item Help
Case Opened		Menu Level ▶
	1.376V	
DDR2 1.8V	1.872V	
+3.3V	3.328V	
+12V	12.112V	
Current System Temperature	30°C	
Current CPU Temperature	47°C	
Current CPU FAN Speed	3375 RPM	
Current SYSTEM FAN Speed	0 RPM	
Current SYSTEM FAN2 Speed	0 RPM	
Current POWER FAN Speed	0 RPM	
CPU Warning Temperature	[Disabled]	
CPU FAN Fail Warning	[Disabled]	
SYSTEM FAN Fail Warning	[Disabled]	
CPU Smart FAN Control	[Enabled]	
CPU Smart FAN Mode	[Auto]	
System Smart FAN Control	[Enabled]	

Reset Case Open Status

前のシャーシ侵入ステータスの記録を保存または消去します。Enabled では前のシャーシ侵入ステータスのレコードを消去し、Case Opened フィールドが次に起動するとき "No" を表示します。 (既定値: Disabled)

Case Opened

マザーボード CI ヘッダに接続されたシャーシ侵入検出デバイスの検出ステータスを表示します。 システムシャーシカバーを取り外すと、このフィールドは "Yes" を表示し、カバーを取り外さない場合、"No"を表示します。シャーシ侵入ステータスのレコードを消去するには、Reset Case Open Status を Enabled に設定し、設定を CMOS に保存し、システムを再起動します。

- Current Voltage(V) Vcore/DDR2 1.8V/+3.3V/+12V 現在のシステム電圧を表示します。
- Current System/CPU Temperature現在のシステム/CPU 温度を表示します。
- Current CPU/SYSTEM FAN/POWER FAN Speed (RPM)
 現在の CPU/システム/電源ファン速度を表示します。
- CPU Warning Temperature

CPU 温度の警告しきい値を設定します。CPU 温度がしきい値を超えると、BIOS は警告音を出します。オプションは、Disabled (既定値)、60°C/140°F, 70°C/158°F, 80°C/176°F, 90°C/194°F です。

CPU/SYSTEM FAN Fail Warning

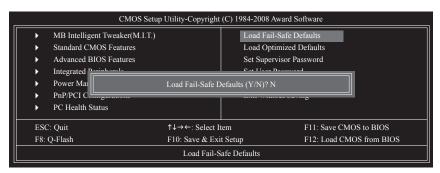
CPU/システムファンが接続されているか失敗したかで、システムは警告を出します。これが発生したときは、ファンの状態またはファン接続をチェックしてください。(既定値: Disabled)

CPU ファン速度のコントロールの Enables/Disables を切り替えます。 Enabled にすると、CPU ファンは CPU 温度によって異なる速度で作動できます。 システム要件に基づき、 EasyTune でファン速度を調整できます。 無効にすると、 CPU ファンは全速で作動します。 (既定値: Enabled)

→ CPU Smart FAN Mode

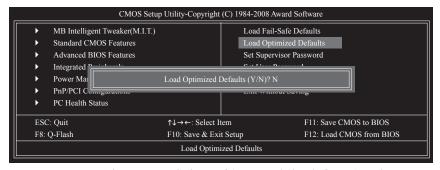
CPU ファン速度の制御方法を指定します。 CPU Smart FAN Control が Enabled に設定されている場合のみ、この項目を構成できます。

▶ Auto BIOS は取り付けられた CPU ファンのタイプを自動的に検出し、最適の CPU ファ

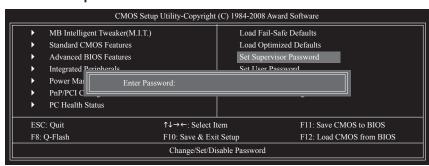

ン制御モードを設定します。(既定値)

▶ Voltage 3 ピン CPU ファンに対して電圧モードを設定します。▶ PWM 4 ピン CPU ファンに対して PWM モードを設定します。

→ System Smart FAN Control


システムファンの速度コントロール機能の Enables/Disables を切り替えます。 Enabled では、システム温度に従って異なる速度でシステムファンを動作します。システム要件に基づいて、EasyTune でファン速度を調整します。無効の場合、システムファンは最高速度で作動します。(既定値: Enabled)

2-10 Load Fail-Safe Defaults


このアイテムで <Enter> を押し <Y> キーを押すと、もっとも安全な BIOS 既定値設定がロードされます。 システムが不安定になった場合、マザーボードのもっとも安全でもっとも安定した BIOS 設定である、 フェールセーフ既定値をロードしてください。

2-11 Load Optimized Defaults

このアイテムで <Enter> を押し <Y> キーを押すと、最適な BIOS 既定値設定がロードされます。BIOS 既定値設定により、システムは最適の状態で作動します。BIOS を更新した後、または CMOS 値を消去した後、最適化既定値を常にロードします。

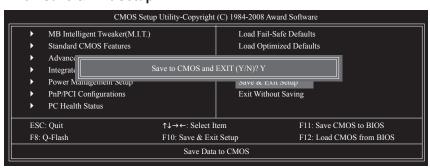
2-12 Set Supervisor/User Password

このアイテムで <Enter> を押して 8 文字以内でパスワードを入力し、<Enter> を押します。パスワードを確認するように求められます。パスワードを再入力し、<Enter>を押します。

BIOSセットアッププログラムでは、次の2種類のパスワード設定ができます:

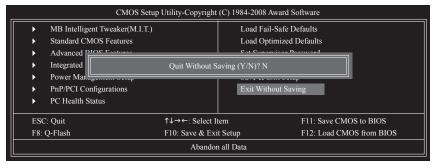
Supervisor Password

システムパスワードが設定され、Advanced BIOS Features で Password Check アイテムが Setup に設定されているとき、BIOS セットアップに入り、BIOS を変更するには、管理者パスワードを入力する必要があります。


Password Check アイテムが System に設定されているとき、システム起動時および BIOS セットアップを入力するには、管理者パスワード(または、ユーザーパスワード)を入力する必要があります。

User Password

Password Check アイテムが System に設定されているとき、システム起動時に管理者パスワード (または、ユーザーパスワード) を入力してシステムの起動を続行する必要があります。BIOS セットアップで、BIOS 設定を変更したい場合、管理者パスワードを入力する必要があります。ユーザーパスワードは、BIOS 設定を表示するだけで変更は行いません。


パスワードを消去するには、パスワードアイテムで <Enter> を押しパスワードを要求されたとき、<Enter> を再び押します。「PASSWORD DISABLED」 というメッセージが表示され、パスワードがキャンセルされたことを示します。

2-13 Save & Exit Setup

このアイテムで <Enter> を押し、<Y> キーを押します。これにより、CMOS の変更が保存され、BIOS セットアッププログラムを終了します。<N> または <Esc> を押して、BIOS セットアップメインメニューに戻ります。

2-14 Exit Without Saving

このアイテムで <Enter> を押し、<Y> キーを押します。これにより、CMOS に対して行われた BIOS セットアップへの変更を保存せずに、BIOS セットアップを終了します。<N> または <Esc> を押して、BIOS セットアップメインメニューに戻ります。

第3章 ドライバのインストール

- ドライバをインストールする前に、まずオペレーティングシステムをインストールします。 (以下の指示は、サンプルとして Windows XP オペレーティングシステムを使用します)。
- オペレーティングシステムをインストールした後、マザーボードドライバをオプションのドライブに 挿入します。ドライバの自動実行スクリーンは、以下のスクリーンショットで示されたように、自 動的に表示されます。(ドライバの自動実行スクリーンが自動的に表示されない場合、マイコンピュータに移動し、光ドライブをダブルクリックし、Run.exe プログラムを実行します)。

3-1 Installing Chipset Drivers (チップセットドライバのインストール)

Now Loading Please wait...

ドライバディスクを挿入すると、「Xpress Install」がシステムを自動的にインストールし、インストールに推奨されるすべてのドライバをリストアップします。 Install All (すべてインストール) ボタンをクリックすると、「Xpress Install」が推奨されたすべてのドライブをインストールします。 または、Install Single Items (単一項目のインストール) をクリックして、インストールするドライバを手動で選択します。

- 「Xpress Install」がドライバをインストールしているときに表示されるポップアップダイアログボック ス(たとえば、新しいハードウェアが見つかりましたウィザードなど)を無視してください。そうでない と、ドライバのインストールに影響を及ぼす可能性があります。
- デバイスドライバには、ドライバのインストールの間にシステムを自動的に再起動するものもあります。その場合は、システムを再起動した後、Xpress Install がその他のドライバを引き続きインストールします。
- ドライバがインストールされたら、オンスクリーンの指示に従ってシステムを再起動してください。マザーボードのドライバディスクに含まれる他のアプリケーションをインストールすることができます。
- Windows XP オペレーティングシステム下で USB 2.0 ドライバをサポートする場合、Windows XP Service Pack 1 以降をインストールしてください。SP1 以降をインストールした後、デバイスマネージャのユニバーサルシリアルバスコントローラにクエスチョンマークがまだ付いている場合、(マウスを右クリックしアンインストールを選択して)クエスチョンマークを消してからシステムを再起動してください。(システムは USB 2.0 ドライバを自動検出してインストールします)。

3-2 Application Software (アプリケーションソフトウェア)

このページでは、GIGABYTE が開発したすべてのツールとアプリケーション、および一部の無償ソフトウェアが表示されます。アイテムに続くInstall (インストール) ボタンを押して、そのアイテムをインストールできます。

3-3 Technical Manuals (技術マニュアル)

このページでは GIGABYTE のアプリケーションガイド、このドライバディスクのコンテンツの説明、およびマザーボードマニュアルをご紹介します。

3-4 Contact (連絡先)

GIGABYTE Taiwan 本社または全世界の支社の連絡先情報の詳細については、このページの URL をクリックし GIGABYTE Web サイトにリンクしてください。

3-5 System (システム)

このページでは、基本システム情報をご紹介します。

3-6 Download Center (ダウンロードセンター)

BIOS、ドライバ、またはアプリケーションを更新するには、**Download Center (ダウンロードセンター)** ボタンをクリックして GIGABYTE の Web サイトにリンクします。BIOS、ドライバ、またはアプリケーションの最新バージョンが表示されます。

第4章 固有の機能

4-1 Xpress Recovery2

Xpress Recovery2 はシステムデータを素早く圧縮してバックアップしたり、復元を実行したりするユーティリティです。NTFS、FAT32、および FAT16 ファイルシステムをサポートしているため、Xpress Recovery2 では PATA および SATA ハードドライブ上のデータをバックアップして、それを復元することができます。

始める前に:

- Xpress Recovery2 は、オペレーティングシステムの最初の物理ハードドライブをチェックします。
 Xpress Recovery2 はオペレーティングシステムをインストールした最初の物理ハードドライブのみをバックアップ/復元することができます。
- Xpress Recovery2 はハードドライブの最後のバックアップファイルを保存し、あらかじめ割り当てられた容量が十分に残っていることを確認します (10 GB 以上を推奨します。実際のサイズ要件は、データ量によって異なります)。
- オペレーティングシステムとドライバをインストールした後、直ちにシステムをバックアップすることをお勧めします。
- データ量とハードドライブのアクセス速度は、データをバックアップ/復元する速度に影響を与えます。
- ハードドライブの復元よりバックアップする方が、長く時間がかかります。

システム要件:

- 512 MB 以上のシステムメモリ
- VESA 互換のグラフィックスカード
- Windows® XP with SP1 以降、Windows® Vista

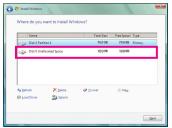
- Xpress Recovery および Xpress Recovery2 は異なるユーティリティです。たとえば、Xpress Recovery で作成されたバックアップファイルは Xpress Recovery2 を使用して復元することはできません。
- USB ハードドライブはサポートされません。
- RAID/AHCI モードのハードドライブはサポートされません。

インストールと設定

システムの電源をオンにして、Windows Vista セットアップディスクからブートします。

A. Windows Vista のインストールとハードドライブの分割

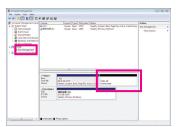
ステップ 1:


Drive options をクリックします。

ステップ 2:

New をクリックします。

"*" Xpress Recovery2 は、次の順序で最初の物理ハードドライブをチェックします: 最初の PATA IDE コネクタ、2 番目の PATA IDE コネクタ、最初の SATA コネクタ、2 番目の SATA コネクタなど。たとえば、ハードドライブが最初の IDE および最初の SATA コネクタに接続されているとき、最初の IDE コネクタのハードドライブが最初の物理ドライブになります。 ハードドライブが 2 番目の IDE および最初の SATA コネクタに接続されているとき、最初の SATA コネクタのハードドライブが最初の物理ドライブになります。


ステップ 3:

ハードドライブをパーティションで区切っているとき、空き領域(10 GB 以上を推奨します。 実際のサイズ要件は、データの量によって異なります)が残っていることを確認し、オペレーティングシステムのインストールを開始します。

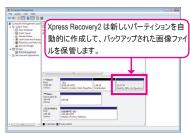
ステップ 4:

オペレーティングシステムのインストール後、デスクトップの**コンピュータ**アイコンを右クリックし、**管理**を選択します。**ディスク管理**に移動して、ディスクの割り当てをチェックします。

ステップ 5

Xpress Recovery2 はバックアップファイルを割り当てられていないスペースに保存します (上の黒いストライプ)。割り当てられていないスペースが不十分だと、Xpress Recovery2 はバックアップファイルを保存できません。

B. Xpress Recovery2 へのアクセス


- 1. マザーボードドライバディスクから起動して、初めて Xpress Recovery2 にアクセスします。Press any key to startup Xpress Recovery2 というメッセージが表示されたら、どれかのキーを押して Xpress Recovery2 に入ります。
- 2. 初めて Xpress Recovery2 でバックアップ機能を使用した後、Xpress Recovery2 はハードドライブに永 久的に保存されます。後で Xpress Recovery2 に入るには、POST 中に <F9> を押してください。

C. Xpress Recovery2 でのバックアップ機能の使用

ステップ 1:

BACKUP を選択して、ハードドライブデータのバックアップを開始します。

ステップ 2:

終了したら、**ディスク管理**に移動してディスク 割り当てをチェックします。

D. Xpress Recovery2 での復元機能の使用


システムが故障した場合、RESTORE を選択してハードド ライブへのバックアップを復元します。それまでバックアップ が作成されていない場合、RESTORE オプションは表示 されません。

E. バックアップの削除

ステップ 1

バックアップファイルを削除する場合、REMOVE を選択します。

ステップ 2:

バックアップファイルを削除すると、バックアップされた画像ファイルは**ディスク管理**からなくなり、 ハードドライブのスペースが開放されます。

F. Xpress Recovery2 を終了する

REBOOT を選択して Xpress Recovery2 を終了します。

4-2 BIOS 更新ユーティリティ

GIGABYTE マザーボードには、Q-Flash™ と @BIOS™ の 2 つの固有 BIOS 更新が含まれています。 GIGABYTE Q-Flash と @BIOS は使いやすく、MSDOS モードに入らずに BIOS を更新することができます。 さらに、このマザーボードは DualBIOS™ 設計を採用して、物理 BIOS チップをさらに 1 つ追加することによって保護を強化しコンピュータの安全と安定性を高めています。

DualBIOS™とは?

デュアル BIOS をサポートするマザーボードには、メイン BIOS とバックアップ BIOS の 2 つの BIOS が搭載されています。 通常、 システムはメイン BIOS で 作動します。 ただし、 メイン BIOS が破損または損傷すると、 バックアップ BIOS

が次のシステム起動を引き継ぎ、BIOS ファイルをメイン BIOS にコピーし、通常にシステム操作を確保します。システムの安全のために、ユーザーはバックアップ BIOS を手動で更新できないようになっています。

Q-Flash™ とは?

Q-Flash があれば、Q-Flash や Window のようなオペレーティングシステムに 入らずにシステム BIOS を更新することができます。BIOS に組み込まれた Q-Flash ツールにより、複雑な BIOS フラッシングプロセスを踏むといった煩わし さから開放されます。

@BIOS™とは?

@BIOS により、Windows 環境に入っている間にシステム BIOS を更新することができます。 @BIOS は一番近い @BIOS サーバーサイトから最新の @

BIOS ファイルをダウンロードし、BIOS を更新します。

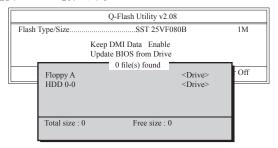
4-2-1 Q-Flash ユーティリティで BIOS を更新する

A. 始める前に:

- 1. GIGABYTE の Web サイトから、マザーボードモデルに一致する最新の圧縮された BIOS 更新ファイルをダウンロードします。
- 2. ファイルを抽出し、新しい BIOS ファイル (たとえば、MA78GUD3.F1) をフロッピーディスク、USB フラッシュドライブ、またはハードドライブに保存します。注: USB フラッシュドライブまたはハードドライブは、FAT32/16/12 ファイルシステムを使用する必要があります。
- 3. システムを再起動します。POSTの間、<End>キーを押して Q-Flash に入ります。注:POST 中に <End>キーを押すことによって、または BIOS セットアップで <F8>キーを押すことによって、Q-Flash にア クセスすることができます。ただし、BIOS 更新ファイルが RAID/AHCI モードのハードドライブ、または独立した IDE/SATA コントローラに接続されたハードドライブに保存されている場合、POST 中に <End>キーを使用して Q-Flash にアクセスします。

BIOS フラッシングは危険性を含んでいるため、注意して行ってください。 BIOS の不適切なフラッシュは、システムの誤動作の原因となります。

B. BIOS を更新する


BIOS を更新しているとき、BIOS ファイルを保存する場所を選択します。次の手順では、BIOS ファイルをフロッピーディスクに保存していると仮定しています。

ステップ 1:

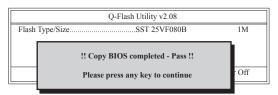
1. BIOS ファイルを含むフロッピーディスクをフロッピーディスクドライブに挿入します。Q-Flash のメインメニューで、上矢印キーまたは下矢印キーを使用して Update BIOS from Drive を選択し、<Enter>を押します。

- Save Main BIOS to Drive オプションにより、現在の BIOS ファイルを保存することができます。
- Q-Flash は FAT32/16/12 ファイルシステムを使用して、USB フラッシュドライブまたはハードドライブのみをサポートします。
- BIOS 更新ファイルが RAID/AHCI モードのハードドライブ、または独立した IDE/SATA コントローラに接続されたハードドライブに保存されている場合、POST 中に <End> キーを使用して Q-Flash にアクセスします。
- 2. Floppy A を選択し <Enter> を押します。

3. BIOS 更新ファイルを選択し、<Enter> を押します。

BIOS 更新ファイルが、お使いのマザーボードモデルに一致していることを確認します。

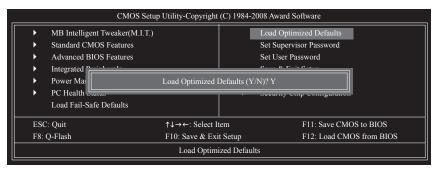
ステップ2:


フロッピーディスクから BIOS ファイルを読み込むシステムのプロセスは、スクリーンに表示されます。"Are you sure to update BIOS?" というメッセージが表示されたら、<Enter> を押して BIOS 更新を開始します。モニタには、更新プロセスが表示されます。

- システムが BIOS を読み込み/更新を行っているとき、システムをオフにしたり再起動したりしないでください。
- システムが BIOS を更新しているとき、フロッピーディスク、USB フラッシュドライブ、またはハードドライブを取り外さないでください。

ステップ 3:

更新プロセスが完了したら、何れかのキーを押してメインメニューに戻ります。



ステップ 4:

<Esc> を押し、次に <Enter> を押して Q-Flash を終了し、システムを再起動します。システムが起動したら、新しい BIOS バージョンが POST スクリーンに存在することを確認する必要があります。

ステップ 5:

POST 中に、<Delete> キーを押して BIOS セットアップに入ります。Load Optimized Defaults を選択し、<Enter> を押して BIOS 既定値をロードします。BIOS が更新されるとシステムはすべての周辺装置を再検出するため、BIOS 既定値を再ロードすることをお勧めします。

<Y>を押して BIOS 既定値をロードします。

ステップ 6:

Save & Exit Setup を選択したら < Y> を押して設定を CMOS に保存し、BIOS セットアップを終了します。 システムが再起動すると、手順が完了します。

4-2-2 @BIOS ユーティリティで BIOS を更新する

A. 始める前に:

- 1. Windows で、すべてのアプリケーションと TSR (メモリ常駐型) プログラムを閉じます。これにより、BIOS 更新を実行しているとき、予期せぬエラーを防ぐのに役立ちます。
- 2. BIOS 更新プロセスの間、インターネット接続が安定しており、インターネット接続が中断されないことを確認してください(たとえば、停電やインターネットのスイッチオフを避ける)。 そうしないと、BIOS が破損したり、 システムが起動できないといった結果を招きます。
- 3. @BIOS を使用しているとき、G.O.M. (企業オンライン管理) 機能を使用しないでください。
- 4. 不適切な BIOS フラッシングに起因する BIOS 損傷またはシステム障害は GIGABYTE 製品の保証の対象外です。

B. @BIOS を使用する:

1. Update BIOS from GIGABYTE Server 1 インターネット更新機能を使用して BIOS を更新する:

Update BIOS from GIGABYTE Server (GIGABYTE サーバーから BIOS の更新) をクリックし、一番近い@BIOSサーバーを選択し、お使いのマザーボードモデルに一致するBIOSファイルをダウンロードします。オンスクリーンの指示に従って完了してください。

マザーボードの BIOS 更新ファイルが @BIOS サーバーサイトに存在しない場合、GIGABYTE の Web サイトから BIOS 更新ファイルを手動でダウンロードし、以下の「インターネット更新機能を使用して BIOS を更新する」の指示に従ってください。

2. Update BIOS from File 1 インターネット更新機能を使用せずに BIOS を更新する:

Update BIOS from File (ファイルから BIOS を更新) をクリックし、インターネットからまたは他のソースを通して取得したBIOS更新ファイルの保存場所を選択します。オンスクリーンの指示に従って、完了してください。

3. Save Current BIOS to File 現在の BIOS をファイルに保存:

Save Current BIOS (現在の BIOS の保存) をクリックして、現在の BIOS ファイルを保存します。

4. ☑ Load CMOS default after BIOS update BIOS 更新後に BIOS 既定値のロード:

Load CMOS default after BIOS update (BIOS 更新後に CMOS 既定値) のロードチェックボックスを選択すると、BIOS が更新されシステムが再起動した後、システムは BIOS 既定値を自動的にロードします。

C. BIOS を更新した後:

BIOS を更新した後、システムを再起動してください。

BIOS 更新が、お使いのマザーボードモデルにフラッシュされ、一致していることを確認します。間違った BIOS ファイルで BIOS を更新すると、システムは起動しません。

EasyTune 6 4-3

GIGABYTE の EasyTune 6 は使いやすいインターフェイスで、ユーザーが Windows 環境でシステム設定を 微調整したりオーバークロック/過電圧を行ったりできます。使いやすい EasyTune 6 インターフェイスには CPUとメモリ情報のタブ付きページも含まれ、ユーザーは追加ソフトウェアをインストールする必要なしに、 システム関連の情報を読み取れるようになります。

EasyTune 6 のインターフェイス

タブ情報

タブ	機能
CPU CPU	CPU タブでは、取り付けた CPU とマザーボードに関する情報が得られます。
Memory	Memory (メモリ) タブでは、取り付けたメモリモジュールに関する情報が得られます。 特定スロットのメモリモジュールを選択してその情報を見ることができます。
Tuner	Tuner (チューナー)タブでは、システムのクロック設定と電圧を変更します。 ・Easy mode (簡単モード)では、CPU FSB 飲みを調整します。 ・Advanced mode (拡張モード)では、スライダを使用してシステムのクロック設定と電圧設定を個別に変更します。 ・Save (保存)では、現在の設定を新しいプロファイル(.txtファイル)で保存します。 ・Load (ロード)では、プロファイルから以前の設定をロードします。 変更を行った後、Set をクリックしてこれらの変更を有効にするか、Default をクリックしてデフォルト値に戻してください。
Graphics	Graphics (グラフィックス) タブでは、ATIまたはNVIDIAグラフィックスカード用のコアクロックとメモリクロックを変更します。
Smart	Smart (スマート) タブでは、C.I.A.2レベルとスマートファンモードを指定します。 Smart Fan Advance Mode (スマートファン拡張モード) では、設定したCPU温度しき い値に基づいて CPU ファン速度を直線的に変更することができます。
HW Monitor	HW Monitor (HW モニタ) タブでは、ハードウェアの温度、電圧およびファン速度を監視離、温度/ファン速度アラームを設定します。ブザーからアラートサウンドを選択したり、独自のサウンドファイル (wavファイル) を使用できます。

EasyTune 6 の使用可能な機能は、マザーボードのモデルによって異なります。淡色表示になったエリアは、アイ Fムが設定できないか、機能がサポートされていないことを示しています。

オーバークロック/過電圧を間違って実行すると CPU、チップセット、またはメモリなどのハードウェアコンポーネント が損傷し、これらのコンポーネントの耐用年数が短くなる原因となります。オーバークロック/過電圧を実行する CAUTION 前に、EasyTune 6 の各機能を完全に理解していることを確認してください。システムが不安定になったり、その 他の予期せぬ結果が発生する可能性があります。

4-4 Easy Energy Saver

GIGABYTE Easy Energy Saver (2π) はボタンをクリックするだけで、並ぶもののない省電力を実現する革命的な技術です。 高度な独自開発のソフトウェア設計を採用した GIGABYTE Easy Energy Saver は、コンピュータの性能を犠牲にすることなしに、きわめて優れた省電力と機能強化された電力効率を提供することができます。

The Easy Energy Saver Interface (Easy Energy Saver のインターフェイス) A. Meter Mode (メーターモード)

メーターモードで、GIGABYTE Easy Energy Saver が一定時間に節約した電力量を表示します。

Meter Mode (メーターモード) - ボタン情報テーブル

	ボタンの説明
1	Easy Energy Saver オン/オフ (On/Off) スイッチ (既定値: Off)
2	ダイナミック CPU 周波数機能のオン/オフスイッチ (既定値: Off) (注2)
3	CPU スロットディスプレイ
4	CPU 電圧表示
5	3 レベル CPU 電圧スイッチ (既定値: 1) (注3)
6	現在の CPU 消費電力
7	メーター時間
8	パワーセービング (時間に基づく計算機のパワーセービング)
9	メーター/タイマーのリセットスイッチ
10	メーターモードスイッチ
11	合計モードスイッチ
12	終了 (アプリケーションはステルスモードに入ります)
13	最小化 (アプリケーションはタスクバーで実行し続けます)
14	情報/ヘルプ
15	ライブユーティリティ更新 (最新のユーティリティバージョンをチェック)

- 上記のデータは参照専用です。実際のパフォーマンスは、マザーボードモデルによって異なります。
- CPU パワーとパワースコアは、参照専用です。実際の結果は、テスト方式に基づいています。

B. Total Mode (合計モード)

合計モードでは、初めて Easy Energy Saver をアクティブにしてから一定期間に蓄積された合計の節電量を表示することができます (注 4)。

Total Mode (合計モード) - ボタン情報テーブル

	ボタンの説明
1	Easy Energy Saver オン/オフ (On/Off) スイッチ (既定値: Off)
2	ダイナミック CPU 周波数機能のオン/オフスイッチ (既定値: Off)
3	CPU スロットディスプレイ
4	CPU 電圧表示
5	3 レベル CPU 電圧スイッチ (既定値:1) (注3)
6	現在の CPU 消費電力
7	時間/日付 Easy Energy Saver を有効にする
8	合計のパワーセービング (Easy Energy Saver を有効にしたときの合計パワーセービング) (注5)
9	メーター/タイマーのリセットスイッチ
10	メーターモードスイッチ
11	終了 (アプリケーションはステルスモードに入ります)
12	最小化 (アプリケーションはタスクバーで引き続き実行されます)
13	情報/ヘルプ
14	ライブユーティリティ更新 (最新のユーティリティバージョンをチェック)

C. Stealth Mode (ステルスモード)

ステルスモードで、システムは再起動後も、ユーザー定義の省電力設定で作動します。アプリケーションを変更するか完全に終了する場合のみ、アプリケーションに再び入ってください。

- (注 1) ハードウェア制限により、Easy Energy Saver のサポートを有効にするには、AMD AM2+ Phenom™ シリーズ CPU を取り付ける必要があります。
- (注 2) ダイナミック周波数機能でシステムのパワーセービングを最大化すると、システムパフォーマンスが 影響を受けることがあります。
- (注3) 1: 標準パワーセービング (既定値); 2: 拡張パワーセービング; 3: 最高のパワーセービング
- (注 4) Easy Energy Saver が有効な状態にあるときのみ節約された総電力量は再びアクティブになるまで記録され、省電力メーターはゼロにリセットできません。
- (注 5) 合計省電力が 99999999 ワットになると、Easy Energy Saver Meter は自動的にリセットされます。

4-5 Q-Share

Q-Share は簡単で便利なデータ共有ツールです。LAN 接続設定と Q-Share を構成した後、データを同じネットワークのコンピュータと共有し、インターネットリソースの最大限に活用することができます。

Q-Share の使用方法

マザーボードドライバディスクから Q-Share をインストールした後、スタート>すべてのプログラム >GIGABYTE>Q-Share.exe を順にポイントして、Q-Share ツールを起動します。システムトレイで Q-Share シイコンを検索し、このアイコンを右クリックしてデータ共有設定を行います。

図1. 無効になったデータ共有

図2. 有効になったデータ共有

オプションの説明

オプション	説明
Connect	データ共有を有効にしたコンピュータを表示します。
Enable Incoming Folder	データ共有を有効にする
Disable Incoming Folder	データ共有を無効にする
Open Incoming Folder :C:\Q-ShareFolder	共有されたデータフォルダへのアクセス
Change Incoming Folder :C:\Q-ShareFolder	共有するデータフォルダを変更 (注)
Update Q-Share	Q-Share のオンライン更新
About Q-Share	現在の Q-Share バージョンを表示する
Exit	Q-Share の終了

(注) このオプションは、データ共有が有効になっていないときにのみ使用できます。

4-6 Time Repair (時刻修復)

Microsoft Volume Shadow コピーサービステクノロジに基づき、時刻修復では Windows Vista オペレーティン グシステムでシステムデータをすばやくバックアップして復元します。 修復は NTFS ファイルシステムをサポートし、PATA および SATA ハードドライブにシステムデータを復元できます。

システム復元

画面の右または下部にあるナビゲーションバーを使用してシステム復元ポイントを選択し、異なる時間に バックアップされたシステムデータを表示します。ファイル/ディレクトリを選択し、Copy (コピー) ボタンをクリッ クしてファイル/ディレクトリを復元するか、Restore (復元) をクリックしてシステム全体を復元します。

詳細設定画面:

機能
システム復元ポイントを自動的に作成する
システム復元ポイントを自動的に作成し
ない
システム復元ポイントを作成する一定の
間隔を設定する
シャドウコピーを保存するために、使用さ
れるハードドライブの容量のパーセンテー
ジを設定する
日に最初の起動時にシステム復元ポイ
ントを作成する
時刻修復ヘルプファイルを表示する

- 使用されるハードドライブは 1 GB 以上の容量と 300 MB 以上の空きスペースが必要です。
- 各ストレージボリュームは、64 のシャドウコピーに対応しています。この制限に達したら、もっとも古いシャドウコピーが削除され復元することはできません。シャドウコピーは読み取り専用であるため、シャドウコピーのコンテンツを編集することはできません。

第5章 付録

5-1 SATA ハードドライブの設定

SATA ハードドライブを設定するには、以下のステップに従ってください:

- A. コンピュータに SATA ハードドライブをインストールします。
- B. BIOS セットアップで SATA コントローラモードを設定します。
- C. RAID BIOS で RAID アレイを設定します。(注1)
- D. Windows XP 用の SATA RAID/AHCI ドライバを含むフロッピーディスクを作成します。(注2)
- E. SATA RAID/AHCI ドライバとオペレーティングシステムをインストールします。(注2)

始める前に

以下を準備してください:

- 少なくとも2台のSATAハードドライブ(最適のパフォーマンスを発揮するために、同じモデルと容量のハードドライブを2台使用することをお勧めします)。RAIDを作成したくない場合、準備するハードドライブは1台のみで結構です。
- フォーマット済みの空きフロッピーディスク。
- Windows Vista/XP セットアップディスク。
- マザーボードドライバディスク。

5-1-1 オンボード SATA コントローラを設定する

A. コンピュータに SATA ハードドライブをインストールする

SATA 信号ケーブルの一方の端を SATA ハードドライブの背面に接続し、他の端をマザーボードの空いている SATA ポートに接続します。 次に、電源装置からハードドライブに電源コネクタを接続します。

- (注 1) SATA コントローラに RAID アレイを作成しない場合、このステップをスキップしてください。
- (注2) SATA コントローラが AHCI または RAID モードに設定されているときに要求されます。

B. BIOS セットアップで SATA コントローラモードを設定する

SATA コントローラコードがシステム BIOS セットアップで正しく設定されていることを確認してください。

ステップ 1:

コンピュータの電源をオンにし、POST 中に <Delete> を押して BIOS セットアップに入ります。 OnChip SATA Controller が Integrated Peripherals 下で有効になっていることを確認します。SATA2_0/1/2/3コネクタに 対して RAID を有効にするには、OnChip SATA Type を RAID に設定します。SATA2_4/SATA2_5 コネクタ に対して RAID を有効にするには、OnChip SATA Type を RAID に設定し、OnChip SATA Port4/5 Type を As SATA Type に設定します(図 1)。

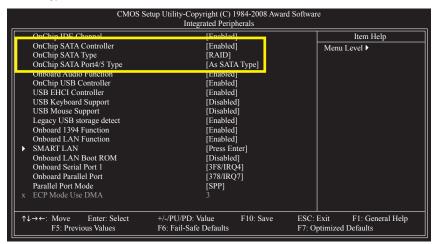


図 1

ステップ 2:

変更を保存し BIOS セットアップを終了します。

⇒⇒ このセクションで説明した BIOS セットアップメニューは、マザーボードの正確な設定によって異なる NOTE 場合があります。表示される実際の BIOS セットアップオプションは、お使いのマザーボードおよび BIOS バージョンによって異なります。

C. RAID BIOS で RAID セットを構成する

RAID BIOS セットアップユーティリティに入って RAID アレイを構成します。RAID を作成しない場合、このステップをスキップしてください。

ステップ 1:

POST メモリテストが開始された後でオペレーティングシステムが起動を開始する前に、「Press <Ctrl-F> to enter FastBuild (tm) Utility」(図 2)というメッセージを確認します。<Ctrl>+<F> キーをヒットして RAID BIOS セットアップユーティリティに入ります。

図 2

ステップ 2:

Main Menu (メインメニュー)

BIOS RAID セットアップユーティリティに入ると、このオプション画面が最初に表示されます。(図 3)。 アレイに割り当てられたディスクドライブを表示するには、<1> を押して View Drive Assignments ウィンドウに入ります。

アレイを作成するには、<2>を押して Define LD ウィンドウに入ります。 アレイを削除するには、<3>を押して Delete LD ウィンドウに入ります。

コントローラ設定を表示するには、<4>を押して Controller Configuration ウィンドウに入ります。

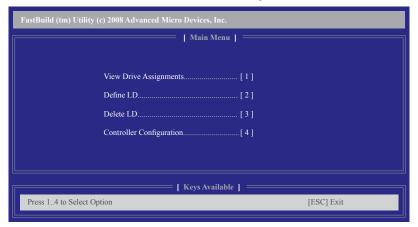


図 3

Create Arrays Manually (アレイを手動で作成)

新しいアレイを作成するには、<2>を押して Define LD ウィンドウに入ります(図 4)。 Main Menu から Define LD を選択すると、1 つまたは複数のディスクアレイに対して、ドライブ要素と RAID レベルを手動で定義するプロセスを開始できます。

図 4

図4では、上または下矢印キーを使用して論理ディスクセットに移動し、<Enter>を押してRAID構成メニューに入ります(図5)。



図 5

次の手順では、例として RAID 0 を作成します。

- 1. RAID Mode セクション下で、<SPACE> キーを押して RAID 0 を選択します。
- 2. Stripe Block サイズを設定します。既定値は 64 KB です。
- 3. Drives Assignments セクション下で、上または下矢印キーを押してドライブをハイライトします。
- <SPACE> キーまたは <Y> を押して Assignment オプションを Y に変更します。このアクションで、ディスクアレイにドライブが追加されます。Total Dry セクションでは、割り当てられたディスク数が表示されます。
- 5. <Ctrl>+<Y> キーを押して情報を保存します。以下のウィンドウが表示されます。

Fast Initialization option has been selected
It will erase the MBR data of the disk.

<Press Ctrl-Y key if you are sure to erase it>

<Press any other key to ignore this option>

図 6

6. <Ctrl>+<Y> を押して MBR を消去するか、他のキーを押してこのオプションを無視します。以下のウィンドウが表示されます。

Press Ctrl-Y to Modify Array Capacity or press any other key to use maximum capacity...

図 7

- 7. <Ctrl>+<Y> を押して RAID アレイの容量を設定するか、他のキーを押してアレイをその最大容量に 設定します。
- 8. 作成が完了すると、画面が Define LD Menu に戻り、新たに作成されたアレイが表示されます。
- 9. RAID BIOS ユーティリティを終了する場合、<Esc> を押して **Main Menu** に戻り Main Menu を再び押します。

View Drive Assignments (ドライブ割り当ての表示)

Main Menu の View Drive Assignments オプションでは、接続されたハードドライブがディスクアレイに割り当てられているか、または割り当て解除されているかどうかが表示されます。 Assignment カラムの下で、ドライブは割り当てられたディスクアレイでラベルされるか、割り当てられていない場合 Free として表示されます。

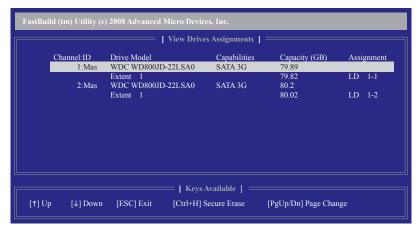


図 8

Delete an Array (アレイの削除)

Delete Array メニューオプションでは、ディスクアレイ割り当てを削除します。

既存のディスクアレイを削除すると、データが失われます。削除を取り消す場合、アレイタイプ、ディ

- 1. アレイを削除するには、Main Menu で<3>を押して Delete LD Menu に入ります。削除するアレイをハ イライトし、<Delete> キーまたは <Alt>+<D> キーを押します。
- 2. View LD Definition Menu が表示され(図 9 を参照)、このアレイに割り当てられたドライブを示しま す。中断するアレイまたは保管キーを削除する場合、<Ctrl>+<Y>を押します。
- 3. アレイが削除されると、画面は Delete LD Menu に戻ります。 <Esc> を押してメインメニューに戻りま

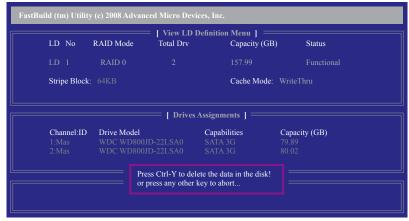


図 9

5-1-2 Windows XP 用の SATA RAID/AHCI ドライバディスケットを作成する (AHCI と RAID モードで必要)

RAID/AHCI モードに設定された SATA ハードドライブにオペレーティングシステムを正常にインストールするには、OS インストールの間に SATA コントローラドライバをインストールする必要があります。ドライバがインストールされていないと、セットアッププロセスの間ハードドライブを認識することができません。まず、SATAコントローラ用のドライバをマザーボードのドライバディスクからフロッピーディスクにコピーします。Windows Vista をインストールしている場合、OS のインストールプロセスの間にマザーボードドライバディスクからSATA RAID ドライバを直接ロードできます。詳細については、次のセクションを参照してください。MS-DOSモード (注) でドライバをコピーする方法については、以下の指示を参照してください。CD-ROM をサポートする起動ディスクと、フォーマット済みの空きフロッピーディスクを用意してください。

ステップ 1: 用意した起動ディスクとマザーボードドライバをシステムに挿入します。起動ディスクから起動します。 A:\> prompt で、光ドライブに変更します(例: D:\>)。 D:\> prompt で、次の 2 つのコマンドを入力します。 コマンドの後で <Enter> を押します (図 1):

cd bootdrv

menu

(注)

ステップ 2:コントローラメニュー (図 2) が表示されたら、起動ディスクを取り出し、フォーマット済みの空きフロッピーディスクを挿入します。メニューから対応する文字を押して、コントローラドライバを選択します。例えば、図2のメニューから、RAID/AHCIにWindows をインストールするには、AMD SB700 SATA に対して (5) SB700/750 SATA を選択します。システムはこのドライブファイルを自動的に圧縮し、フロッピーディスクに転送します。完了したら、<0> を押して終了します。

起動ディスクのないユーザーの場合:

代替システムを使用して、マザーボードドライバディスクを挿入します。光ドライブフォルダから、BootDrv フォルダで MENU.exe ファイルをダブルクリックします (図 3)。図 2 に似たコマンドプロンプトウィンドウが表示されます。

図 3

5-1-3 SATA RAID/AHCI ドライバとオペレーティングシステムをインストールする

SATA RAID/AHCI ドライバディスケットおよび正しい BIOS 設定では、ハードドライブに Windows Vista/XP をいつでもインストールすることができます。次は、Windows XP と Vista インストールの例です。

A. Windows XP のインストール

ステップ 1:

システムを再起動し Windows XP セットアップディスクから起動し、「Press F6 if you need to install a 3rd party SCSI or RAID driver」というメッセージが表示されたらすぐ <F6> を押します (図 1)。 追加デバイスを指定するように求めるスクリーンが表示されます。 SATA RAID/AHCI ドライバを含むフロッピーディスクを挿入し、<S> を押します。

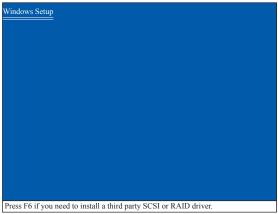


図 1

ステップ 2:

次に、以下の図 2 のようなコントローラメニューが表示されます。AMD AHCI Compatible RAID Controller-x86 platform を選択し、<Enter> を押します。次のスクリーンで、<Enter> を押してドライバのインストールを続行します。ドライバのインストール後、Windows XP インストールに進むことができます。

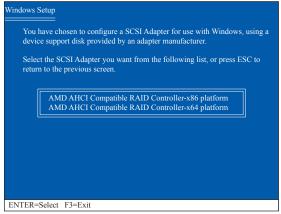


図 2

B. Windows Vista のインストール

(以下の手順は、RAID アレイがシステムに1つしかないことを前提としています)。

ステップ 1:

システムを再起動して Windows Vista セットアップディスクから起動し、標準の OS インストールステップを実行します。以下のような画面が表示されたら(RAID ハードドライブはこの段階では検出されません)、Load Driver を選択します(図 3)。

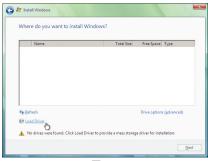


図 3

ステップ 2:

マザーボードドライバディスク(方法 A)または SATA RAID/AHCI を含むフロッピーディスク/USB ドライブ(方法 B)を挿入し、ドライバの場所を指定します(図 4)。注: SATA光学ドライブを使用するユーザーの場合、Windows Vista をインストールする前にマザーボードドライバディスクから USB フラッシュドライブにドライバファイルをコピーしてください(BootDry フォルダに移動し、SB750V フォルダ全体を USB フラッシュドライブに保存します)。方法 Bを使用してドライバをロードします。

方法 A:

マザーボードドライバディスクをシステムに挿入し、次のディレクトリを閲覧します。

\BootDrv\SB750V\LH

Windows Vista 64 ビットの場合、LH64A フォルダを閲覧します。

方法 B:

ドライバファイルを含む USB フラッシュドライブを挿入し、LH (Windows Vista 32 ビットの場合) または LH64A (Windows Vista 64 ビットの場合) フォルダを閲覧します。

図 4

ステップ 3:

図 5 のようなスクリーンが表示されたら、AMD AHCI Compatible RAID Controller を選択し Next を押します。

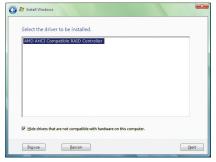


図 5

ステップ 4:

ドライブがロードされたら、RAID ドライブが表示されます。RAID ドライブを選択し、Next を押して OS のインストールを続行します(図 6)。

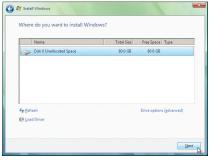


図 6

アレイを再構築する:

再構築は、アレイの他のドライブからハードドライブにデータを復元するプロセスです。再構築は、RAID 1、RAID 5、RAID 10 アレイなど耐故障性アレイに対してのみ、適用されます。古いドライブを交換するには、同等またはそれ以上の容量の新しいドライブを使用していることを確認してください。以下の手順では、新しいドライブを追加して故障したドライブを交換し RAID 1 アレイに再構築するものとします。

オペレーティングシステムに入っている間、チップセットドライバと ATi SB700/750 RAID Utility がマザーボードドライバディスクからインストールされていることを確認してください。 Start Menu で All Programs から AMD RAIDXpert を起動します。

ステップ 1:

ログイン ID とパスワード(既定値:「admin」)を入 力し、Sign in をクリックして AMD RAIDXpert を 起動します。

ステップ 3:

空きドライブを選択し、Start Now をクリックして 再構築プロセスを開始します。

RAIDX POPT

| Comparison | Comp

ステップ 2:

Logical Drive View 下で構築する RAID アレイを 選択し、Logical Drive Information ウィンドウで Rebuild タブをクリックします。

ステップ 4:

画面に再構築の進捗状況が表示されるので、 再構築プロセスの間に Pause/Resume/Abort/ Restart を選択できます。

ステップ 5:

完了したら、Logical Drive Information ウィンドウの Information ページにアレイのステータスが Functional と して表示されます。

5-2 オーディオ入力および出力を設定

5-2-1 2 / 4 / 5.1 / 7.1 チャネルオーディオを設定する

マザーボードでは、背面パネルに 2/4/5.1/7.1 チャンネルオーディオをサポートするオーディオジャックが 6 つ装備されています。右の図は、既定値のオーディオジャック割り当てを示しています。統合された HD (ハイディフィニション) オーディオにジャック再タスキング機能が搭載されているため、ユーザーはオーディオドライバを通して各ジャックの機能を変更することができます。たとえば、4 チャンネルオーディオ設定で、背面スピーカーが既定値の中央/サブウーファスピーカーアウトジャックに差し込まれると、

央/サブウーファスピーカーアウトジャックに差し込まれると、中央/サブウーファスピーカーアウトジャックを背面 スピーカーアウトに設定することができます。

- マイクを取り付けるには、マイクをマイクインまたはラインインジャックに接続し、マイクのジャック 機能を手動で設定します。
- オーディオ信号が、フロントおよびバックパネルのオーディオ接続の両側に同時に表示されます。バックパネルのオーディオを消音にする場合(HD フロントパネルのオーディオモジュールを使用しているときのみサポートされます)、次ページの指示を参照してください。

ハイディフィニションオーディオ (HD Audio)

HD Audioには、44.1KHz/ 48KHz/ 96KHz/ 192KHz サンプリングレートをサポートする高品質デジタル対アナログコンバータ (DACs) が複数組み込まれています。HD Audio はマルチストリーミング機能を採用して、複数のオーディオストリーム (インおよびアウト) を同時に処理しています。 たとえば、MP3 ミュージックを聴いたり、インターネットでチャットを行ったり、インターネットで通話を行ったりといった操作を同時に実行できます。

A. スピーカーを設定する:

(以下の指示は、サンプルとして Windows Vista オペレーティングシステムを使用します)。

ステップ 1:

オーディオドライバをインストールした後、HD Audio Manager

『 アイコンが通知領域に表示されます。
アイコンをダブルクリックして、HD Audio Manager に
アクセスします。

(注) 2/4/5.1/7.1チャネルオーディオ設定:

マルチチャンネルスピーカー設定については、次を参照してください。

- 2 チャンネルオーディオ: ヘッドフォンまたはラインアウト。
- 4 チャンネルオーディオ:前面スピーカーアウトおよび背面スピーカーアウト。
- 5.1 チャンネルオーディオ:前面スピーカーアウト、背面スピーカーアウト、および中心/サブウーファスピーカーアウト。
- 7.1 チャンネルオーディオ:前面スピーカーアウト、背面スピーカーアウト、中心/サブウーファスピーカーアウト、および側面スピーカーアウト。

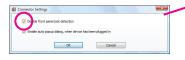
ステップ 2:

オーディオデバイスをオーディオジャックに接続します。

The current connected device is ダイアログボックスが表示されます。接続するタイプに従って、デバイスを選択します。OK をクリックします。

ステップ 3:

Speakers スクリーンで、Speaker Configuration タブをクリックします。Speaker Configuration リストで、セットアップする予定のスピーカー構成のタイプに従い Stereo、Quadraphonic、5.1 Speaker、7.1 Speaker を選択します。これでスピーカーセットアップが完了しました。



B. サウンド効果を設定する:

Sound Effect (サウンドエフェクト) タブのオーディオ環境を設定することができます。

C. AC' 97 フロントパネルオーディオモジュールを有効にする:

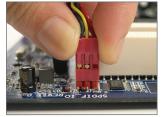
シャーシに AC' 97 フロントパネルオーディオモジュールが付いている場合、AC' 97 機能をアクティブにし、Speaker Configuration タブのツールアイコンをクリックします。 Connector Settings ダイアログボックスで、Disable front panel jack detection チェックボックスを選択します。 OK をクリックして完了します。

D. バックパネルオーティオを消音にする (HD オーティオの場合のみ):

Speaker Configuration タブの右上で Device advanced settings をクリックし、Device advanced settings ダイアログボックスを開きます。 Mute the rear output device, when a front headphone plugged in チェックボックスを選択します。 OK をクリックして完了します。

5-2-2 S/PDIF イン/アウトを構成する

S/PDIF インとアウトケーブル(オプション)には、S/PDIF インと S/PDIF アウト機能があります。


S/PDIF イン:

S/PDIF インジャックでは、デジタルオーディオ信号をコンピュータに入力してオーディオ処理を実行します。

S/PDIF アウト:

アウトジャックはデコード用の外部デコーダにオーディオ信号を送信して、最高のオーディオ品質を実現します。S/PDIF デジタルオーディオ信号を外部デコーダに出力する場合、S/PDIF インおよびアウトケーブルを取り付けます(またはマザーボードバックパネルの光学 S/PDIF アウトコネクタを使用できます)。

A. S/PDIF インおよびアウトケーブルを取り付ける:

ステップ 1:

まず、ケーブルの端のコネクタをマザーボードの SPDIF_IO ヘッダに 接続します。

ステップ 2:

金属製ブラケットをねじでシャーシの背面パネルに固定します。

(注) SPDIF インおよび SPDIF アウトコネクタの実際の場所は、モデルによって異なります。

S/PDIF 同軸ケーブル

ステップ 3:

S/PDIF 同軸ケーブルまたは S/PDIF 光ケーブルのどちらかを外部デコーダに接続して、S/PDIF デジタルオーディオ信号を送信します。

S/PDIF 光ケーブル

B. S/PDIF インおよびアウトを構成する:

B-1. S/PDIF インを構成する:

Digital Input スクリーンで、Default Format タブをクリックして既定値形式を選択します。OK をクリックして完了します。

B-2. S/PDIF Out を構成する:

Digital Output スクリーンで、Default Format タブをクリックし、サンプルレートとビット深度を選択します。 OK をクリックして完了します。

5-2-3 Dolby Home Theater 機能を有効にする

Dolby Home Theater が有効になるまでは、2 チャンネルステレオソースを再生しているとき(フロントスピーカーから)2 チャンネル再生出力しか得られません。4・、5.1・、または7.1・チャンネル、または7.1・チャンネルのオーディオ効果を再生する必要があります。Dolby Home Theater が有効になっていると、2・チャンネルステレオコンテンツが多チャンネルオーディオに変換され、仮想サラウンドサウンド環境を創り出します(注)。

マザーボードドライバディスクから Dolby GUI Software ドライバをインストールします。 Start icon 📻. Point to All Programs, Dolby Control Center をクリックして、ユーティリティにアクセスします。 (次の図では、例として 7.1-スピーカー構成を示しています)

- 1. Dolby Pro Logic IIx をクリックします。 システムは、7.1-チャンネルのサラウンド再生の場合 2-チャンネルオーディを拡張します。
- 2. Natural Bass をクリックして、スピーカーバス効果を有効にします。

(注) Dolby Digital Live が有効になっているとき、デジタルオーディオ出力(S/PDIF)のみが作動し、アナログスピーカーまたはヘッドフォンからのサウンドは聞こえません。

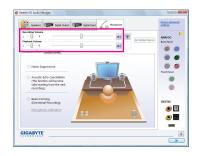
5-2-4 マイク録音を設定する

ステップ 1:

オーディオドライバをインストールした後、HD Audio Manager

『 アイコンが通知領域に表示されます。
アイコンをダブルクリックして、HD Audio Manager に アクセスします。

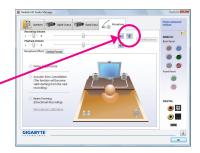
📆 🤴 📑 🌖 - 💂 🐠 5:45 PM


ステップ 2:

マイクを、背面パネルのマイクインジャック (ピンク) または前面パネルのラインインジャックに接続します。次に、マイクが機能するようにジャックを設定します。注:前面パネルと背面パネルのマイク機能は、同時に使用することができません。

ステップ 3:

Microphone 画面に移動します。録音ボリュームを消音にしないでください。サウンドの録音ができなくなります。録音プロセス中に録音されているサウンドを聞くには、再生ボリュームを消音にしないでください。中間レベルの音量に設定することをお勧めします。


マイクに対して現在のサウンド入力の既定値のデバイスを変更する場合、Microphoneを右クリックし、Set Default Device を選択します。

ステップ 4:

マイク用の録音と再生ボリュームを上げるには、 Recording Volume スライドの右の Microphone Boost アイコン = をクリックし、マイクのブーストレベルを設定します。

ステップ 5:

上記の設定を完了したら、Start をクリックし、All Programs をポイントし、Accessories をポイントし、Sound Recorder をクリックしてサウンド録音を開始します。

* Stereo Mix を有効にする

HD Audio Manager で使用する録音デバイスが表示されない場合、以下のステップを参照してください。 次のステップでは Stereo Mix を有効にする方法を説明しています(コンピュータからサウンドを録音するとき に必要となります)。

ステップ 1:

通知領域で Volume アイコン **™** を確認し、このアイコンを右クリックします。 Recording Devices を選択します。

ステップ 2:

Recording タブで、空き領域を右クリックし、Show Disabled Devices を選択します。

ステップ 3:

Stereo Mix が表示されたら、項目を右クリックし Enable を選択します。既定値のデバイスとしてこれを 設定します。

ステップ 4:

HD Audio Manager にアクセスして Stereo Mix を構成 し、Sound Recorder を使用してサウンドを録音する ことができます。

5-2-5 サウンドレコーダを使用する

A. サウンドを録音する:

- 1. オーディオ入力デバイス (たとえば、マイク) をコンピュータに接続していることを確認します。
- 2. オーディオを録音するには、Start Recording ボタンをクリックします Sant Recording 。
- 3. オーディオ録音を停止するには、Stop Recording ボタンをクリックします
 ・ Sup Recording Record

B. 録音したサウンドを再生する:

オーディオファイル形式をサポートするデジタルメディアプレーヤープログラムで録音を再生することができます。

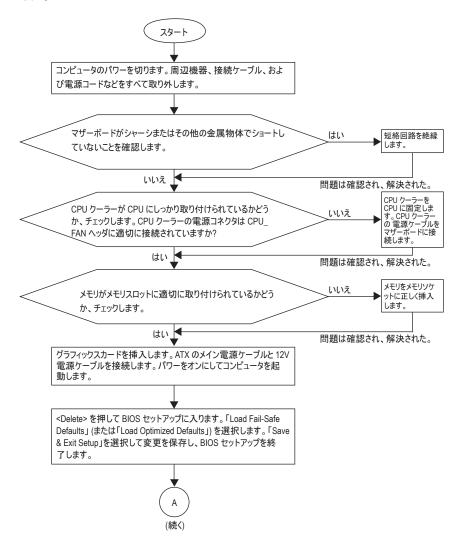
5-3 トラブルシューティング

5-3-1 良くある質問

マザーボードに関する FAQ の詳細をお読みになるには、GIGABYTEの Web サイトの Support\Motherboard\ FAQ page (サポート\マザーボード\FAQ) にアクセスしてください。

- Q: BIOS セットアッププログラムで、一部の BIOS オプションがないのは何故ですか?
- A: いくつかのアドバンストオプションは BIOS セットアッププログラムの中に隠れています。POST 中に、 <Delete> キーを押して BIOS セットアップに入ります。メインメニューで、<Ctrl>+<F1> を押してアドバンストオプションを表示します。
- Q:なぜコンピュータのパワーを切った後でも、キーボードと光学マウスのライトが点灯しているのですか?
- A: いくつかのマザーボードでは、コンピュータのパワーを切った後でも少量の電気でスタンバイ状態を保持しているので、点灯したままになっています。
- Q: CMOS 値をクリアするには?
- A: マザーボードに CMOS クリアリングジャンパが付いている場合、第1章の CLR_CMOS ジャンパに関する 説明を参照して CMOS 値をクリアしてください。ボードにこのジャンパが付いてない場合、第1章のマ ザーボードバッテリに関する説明を参照してください。バッテリホルダーからバッテリを一時的に取り外し て、CMOS への電力の供給を停止し、それによって約1分後に CMOS 値をクリアすることができます。 下記のステップを参照してください。
 - 1. コンピュータのパワーをオフにし、パワーコードを抜きます。
 - 2. バッテリホルダからバッテリをそっと取り外し、1 分待ちます。 (または、ドライバーのような金属物体を使用してバッテリホルダの正および負の端子に触れ、5 秒間ショートさせます)。
 - 3. バッテリを交換します。

ステップ:


- 4. 電源コードを差し込み、コンピュータを再起動します。
- 5. <Delete> を押して BIOS セットアップに入ります。「Load Fail-Safe Defaults」(または「Load Optimized Defaults」) を選択して、BIOS の既定値設定をロードします。
- 6. 変更を保存して BIOS セットアップを終了し (「Save & Exit Setup」を選択)、コンピュータを再起動します。
- Q: なぜスピーカーの音量を最大にしても弱い音しか聞こえてこないのでしょうか?
- A: スピーカーにアンプが内蔵されていることを確認してください。内蔵されていない場合、電源/アンプでスピーカーを試してください。
- Q: POST 中にビープ音が鳴るのは、何を意味していますか?
- A: 次の Award BIOS ビープ音コードの説明を参照すれば、考えられるコンピュータの問題を確認できます。 (参照のみ)
 - 1短:システム起動成功
 - 2 短: CMOS 設定エラー
 - 1長、1短:メモリまたはマザーボードエラー
 - 1長、2短:モニターまたはグラフィックスカードエラー
 - 1長、3短:キーボードエラー
 - 1長、9短:BIOS ROMエラー

連続のビープ(長):グラフィックスカードが適切に挿入されていません

連続のビープ(短):パワーエラー

5-3-2 トラブルシューティング手順

システム起動時に問題が発生した場合、以下のトラブルシューティング手順に従って問題を解決してください。

上の手順でも問題が解決しない場合、ご購入店または地域の代理店に相談してください。または、サポート技術サービスゾーンページにアクセスして、問題を送信してください。当社の顧客サービス担当者が、できるだけ速やかにご返答いたします。

5-4 規制準拠声明

規制通知

このドキュメントは当社の書面による許可なしにはコピーすることができません。また、その内容を第三者に提供したり不正な目的で使用することもできません。違反すると、起訴される場合があります。ここに含まれる情報は、印刷時点ですべての点において正確であったと信じています。しかし、GIGABYTE はこのテキストでの誤植や脱落に責任を負いません。また、このドキュメントの情報は将来予告なしに変更することがありますが、GIGABYTEで必ず変更するいうことではありません。

環境保全への関与

すべてのGIGABYTE マザーボードは高性能であるだけでなく、欧州連合のRoHS(特定有害物質使用制限指令)およびWEEE (廃電気電子機器指令) 環境指令、および世界のほとんどの安全要件を満たしています。有害物質が環境に廃棄されないように、また天然資源の使用を最大限に高めるために、GIGABYTEでは「使用期限の切れた」製品の材料を責任を持ってリサイクルしたり、再使用する方法について、次の情報を提供いたします。

有害物質の規制 (RoHS) 指令声明

GIGABYTE製品は有害物質 (Cd、Pb、Hg、Cr+6、PBDE、PBB) を追加することは目的としていません。また、これらの有害物質から守るものでもありません。部品とコンポーネントは RoHS 要件を満たすように、慎重に選択されています。さらに、GIGABYTE では国際的に禁止されている有毒化学物質を使用しない製品の開発にも引き続き努力を払っています。

廃電気電子機器 (WEEE) 指令への声明

GIGABYTEは2002/96/EC WEEE(廃電気電子機器)指令から解釈して、国内法に従っています。WEEE 指令は電気電子デバイスとそのコンポーネントの取扱、収集、リサイクルおよび廃棄を指定しています。 指令に基づき、使用済み機器にはマークを付け、分別収集し、適切に廃棄する必要があります。

WEEE 記号声明

製品やそのパッケージに付けられた以下の記号は、本製品を他の廃棄物と一緒に処分してはいけないことを示しています。代わりに、ごみ収集センターに持ち込んで、処理、収集、リサイクルおよび廃棄する必要があります。廃棄時に廃棄機器の分別収集とリサイクルをすることで、天然資源が保全され、人間の健康と環境を保護するようにリサイクルされます。廃棄機器のリサイクル場所の詳細については、地方自治体に、また環境に安全なリサイク

ルの詳細については、家庭廃棄物処理サービスまたは製品のご購入店にお問い合わせください。

- お使いの電気電子機器の寿命が切れた場合、地域のごみ収集センターに「持ち込んで」リサイクルしてください。
- ◆ 「寿命の切れた」製品のリサイクル、再使用についてさらにアドバイスが必要な場合、製品のユーザー ズマニュアルに一覧したサービスセンターまでご連絡ください。適切な方法をお知らせいたします。

最後に、本製品の省エネ機能を理解して使用したり、本製品を配送したときに梱包していた内部と外部のパッケージ(輸送用コンテナを含む)をリサイクルしたり、使用済みバッテリを適切に廃棄またはリサイクルすることにより、他の環境に優しい行動を取られることをお勧めします。お客様の支援があれば、電気電子機器の生産に必要な天然資源の量を削減し、「寿命の切れた」製品の処分用のごみ廃棄場の使用を最小限に抑え、有害の危険性のある物質を環境に流入しないようにし適切に処分することにより生活の質を改善することができます。

中国の危険有害物質の規制表

次の表は、中国の危険有害物質の規制 (中国 RoHS) 要件に準拠して供給されています:

关于符合中国《电子信息产品污染控制管理办法》的声明 Management Methods on Control of Pollution from Electronic Information Products (China ROMS Declaration)

产品中有毒有害物质或元素的名称及含量

Hazardous Substances Table

	Hazardous	s Substanc	ces lable			
	素 (Hazardou:	s Substances)				
部件名称(Parts)	铅(Pb)	汞(Hg)	镉(Cd)	六价铬 (Cr(VI))	多溴联苯 (PBB)	多溴二苯醚 (PBDE)
PCB板 PCB	0	0	0	0	0	0
结构件及风扇 Mechanical parts and Fan	×	0	0	0	0	0
芯片及其他主动零件 Chip and other Active components	×	0	0	0	0	0
连接器 Connectors	×	0	0	0	0	0
被动电子元器件 Passive Components	×	0	0	0	0	0
线材 Cables	0	0	0	0	0	0
焊接金属 Soldering metal	0	0	0	0	0	0
助焊剂,散热膏,标签及其他耗材 Flux,Solder Paste,Label and other Consumable Materials	0	0	0	0	0	0

○:表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006标准规定的限量要求以下。 Indicates that this hazardous substance contained in all homogenous materials of this part is below the limit requirement SJ/T 11363-2006

X:表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006标准规定的限量要求。 Indicates that this hazardous substance contained in at least one of the homogenous materials of this part is above the limit requirement in SJ/T 11363-2006

对销售之日的所受售产品,本表显示我公司供应链的电子信息产品可能包含这些物质。注意:在所售产品中 可能会也可能不会含有所有所列的部件。

This table shows where these substances may be found in the supply chain of our electronic information products, as of the date of the sale of the enclosed products. Note that some of the component types listed above may or may not be a part of the enclosed product.

- 100 -

GA-MA780G-UD3H マザーボード

- 102 -

GA-MA780G-UD3H マザーボード

GIGA-BYTE TECHNOLOGY CO., LTD.

Address: No.6, Bau Chiang Road, Hsin-Tien,

Taipei 231, Taiwan TEL: +886-2-8912-4000 FAX: +886-2-8912-4003

Tech. and Non-Tech. Support (Sales/Marketing):

http://ggts.gigabyte.com.tw

WEB address (English): http://www.gigabyte.com.tw WEB address (Chinese): http://www.gigabyte.tw

G.B.T. INC. - U.S.A.

TEL: +1-626-854-9338 FAX: +1-626-854-9339

Tech. Support:

http://rma.gigabyte-usa.com

Web address: http://www.gigabyte.us

• G.B.T Inc (USA) - メキシコ

Tel: +1-626-854-9338 x 215 (Soporte de habla hispano)

FAX: +1-626-854-9339

Correo: soporte@gigabyte-usa.com

Tech. Support:

http://rma.gigabyte-usa.com

Web address: http://latam.giga-byte.com/

GIGA-BYTE SINGAPORE PTE. LTD. - シンガポール

WEB address: http://www.gigabyte.sg

タイ

WEB address: http://th.giga-byte.com

ベトナム

WEB address: http://www.gigabyte.vn

NINGBO G.B.T. TECH. TRADING CO., LTD. - 中国

WEB address: http://www.gigabyte.cn

上海

TEL: +86-21-63410999 FAX: +86-21-63410100

北京

TEL: +86-10-62102838 FAX: +86-10-62102848

武漢

TEL: +86-27-87851312 FAX: +86-27-87851330

広州

TEL: +86-20-87540700 FAX: +86-20-87544306

成都

TEL: +86-28-85236930 FAX: +86-28-85256822

西安

TEL: +86-29-85531943 FAX: +86-29-85510930

瀋陽

TEL: +86-24-83992901 FAX: +86-24-83992909

• GIGABYTE TECHNOLOGY (INDIA) LIMITED - インド

WEB address: http://www.gigabyte.in

サウジアラピア

WEB address: http://www.gigabyte.com.sa

GIGABYTE TECHNOLOGY PTY. LTD. - オーストラリア

WEB address: http://www.gigabyte.com.au

• G.B.T. TECHNOLOGY TRADING GMBH - ドイツ

WEB address: http://www.gigabyte.de

G.B.T. TECH. CO., LTD. - U.K.

WEB address: http://www.giga-byte.co.uk

• GIGA-BYTE TECHNOLOGY B.V. - オランダ

WEB address: http://www.giga-byte.nl

• GIGABYTE TECHNOLOGY FRANCE - フランス

WEB address: http://www.gigabyte.fr

• スウェーデン

WEB address: http://www.giga-byte.se

イタリア

WEB address: http://www.giga-byte.it

スペイン

WEB address: http://www.giga-byte.es

・ギリシャ

WEB address: http://www.giga-byte.gr

チェコ共和国

WEB address: http://www.gigabyte.cz

ハンガリー

WEB address: http://www.giga-byte.hu

トルコ

WEB address: http://www.gigabyte.com.tr

ロシア

WEB address: http://www.gigabyte.ru

ポーランド

WEB address: http://www.gigabyte.pl

ウクライナ

WEB address: http://www.gigabyte.ua

・ルーマニア

WEB address: http://www.gigabyte.com.ro

セルピア

WEB address: http://www.gigabyte.co.yu

• カザフスタン

WEB address: http://www.giga-byte.kz

GIGABYTE web サイトにアクセスし、web サイトの右下の言語リストで言語を選択してください。

• GIGABYTE Global Service System

技術的または技術的でない(販売/マーケティング) 質問を送信するには:

http://ggts.gigabyte.com.tw にリンクしてから、言語を選択し、システムに入ります。