GA-X99P-SLI

ユーザーズマニュアル

改版 1004 12MJ-X99PSLI-1004R

製品の詳細については、GIGABYTE の Web サイトにアクセスしてください。

地球温暖化の影響を軽減するために、本製品の梱包材料はリサイクルおよび再使用可能です。GIGABYTEは、環境を保護するためにお客様と協力いたします。

Declaration of Conformity

We, Manufacturer/Importer,

G.B.T. Technology Trading GMbH

Declare that the product Bullenkoppel 16, 22047 Hamburg, Germany

Product Type: Motherboard

Product Name: GA-X99P-SLI

conforms with the essential requirements of the following directives

MC Directive 2004/108/EC (until 2016/04/19), 2014/30/EU (after 2016/04/20):

Power-line flicker:

EN 61000-3-3:2013

EN 55022:2010/AC2011 EN 61000-3-2:2006+A2:2009 EN 55024:2010

 \[
 \] \text{Low Voltage Directive 2006/95/EC (until 2016/04/19), 2014/35/EU (after 2016/04/20);
 \[
 \] \text{Safety:}
 \[
 \] \text{Safety:}
 \[
 \]

EN60950-1:2006+A11:2009+A12:2011+A2:2013

□ RoHS Directive 2011/65/EU

Restriction of use of certain substances in electronic equipment: substances listed in Annex II, in concentrations and applications banned by the directive. This product does not contain any of the restricted

(Stamp)

Date: Nov. 12, 2015

Name: Timmy Huang

DECLARATION OF CONFORMITY

Per FCC Part 2 Section 2.1077(a)

Responsible Party Name: G.B.T. INC. (U.S.A.)

Address: 17358 Railroad Street

City of Industry, CA 91748

Phone/Fax No: (626) 854-9338/ (626) 854-9326

hereby declares that the product

Product Name: Motherboard

Model Number: GA-X99P-SLI

Conforms to the following specifications: FCC Part 15, Subpart B, Section 15.107(a) and Section 15.109

(a), Class B Digital Device

Supplementary Information:

cause harmful and (2) this device must accept any inference received subject to the following two conditions: (1) This device may not This device complies with part 15 of the FCC Rules. Operation is

including that may cause undesired operation.

Representative Person's Name: <u>ERIC LU</u>

Signature: Eric Lu

Date: Nov. 12, 2015

著作権

© 2016 GIGA-BYTE TECHNOLOGY CO., LTD.版権所有。

本マニュアルに記載された商標は、それぞれの所有者に対して法的に登録されたものです。

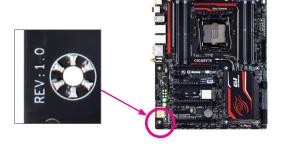
免責条項

このマニュアルの情報は著作権法で保護されており、GIGABYTE に帰属します。 このマニュアルの仕様と内容は、GIGABYTE により事前の通知なしに変更されることがあります。

本マニュアルのいかなる部分も、GIGABYTE の書面による事前の承諾を受ける ことなしには、いかなる手段によっても複製、コピー、翻訳、送信または出版す ることは禁じられています。

ドキュメンテーションの分類

本製品を最大限に活用できるように、GIGABYTE では次のタイプのドキュメンテーションを用意しています:


- 製品を素早くセットアップできるように、製品に付属するクイックインストールガイドをお読みください。
- 詳細な製品情報については、ユーザーズマニュアルをよくお読みください。

製品関連の情報は、以下の Web サイトを確認してください: http://www.gigabyte.jp

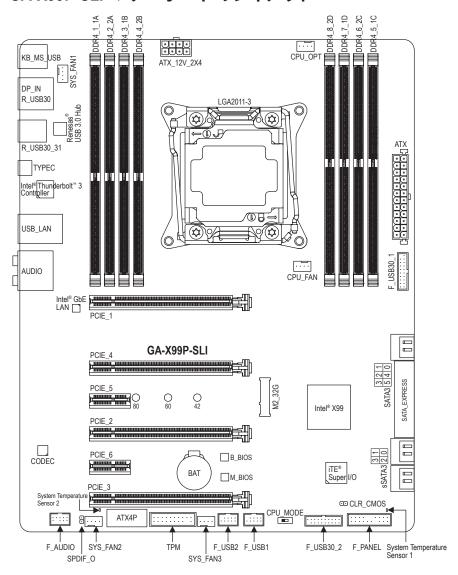
マザーボードリビジョンの確認

マザーボードのリビジョン番号は「REV: X.X.」のように表示されます。例えば、「REV: 1.0」はマザーボードのリビジョンが 1.0 であることを意味します。マザーボード BIOS、ドライバを更新する前に、または技術情報をお探しの際は、マザーボードのリビジョンをチェックしてください。

例:

目次

ボックス	(の内)	容	6
		マザーボードのレイアウト	
第1章	/\-	9	
	1-1	取り付け手順	9
	1-2	製品の仕様	10
	1-3		
	1-	3-1 CPU を取り付ける	
		3-2 CPU クーラーを取り付ける	
	1-4	メモリの取り付け	16
	1-	4-1 4チャンネルメモリ設定	16
	1-	4-2 メモリの取り付け	
	1-5	拡張カードを取り付ける	
	1-6	AMD CrossFire [™] /NVIDIA® SLI [™] 構成のセットアップ	19
	1-7	背面パネルのコネクター	21
	1-8	内部コネクター	23
第2章	BIOS	らセットアップ	35
	2-1	起動画面	
	2-2	メインメニュー	37
	2-3	M.I.T	39
	2-4	System Information (システムの情報)	51
	2-5	BIOS Features (BIOS の機能)	
	2-6	Peripherals (周辺機器)	
	2-7	Chipset (チップセット)	
	2-8	Power Management (電力管理)	
	2-9	Save & Exit (保存して終了)	


SATA ハードドライブの設定		
3-1 SATA コントローラーを構成する	63	
3-2 SATA RAID/AHCI ドライバーとオペレーティングシステムの		
インストール	75	
/ +4=3	70	
ドライバのインストール	79	
規制吉明	80	
	SATA ハードドライブの設定	

ボックスの内容

- ☑ GA-X99P-SLI マザーボード
- ☑ マザーボードドライバディスク
- ☑ ユーザーズマニュアル
- ☑ クイックインストールガイド
- ☑ SATAケーブル (x4)
- ☑ DisplayPort ケーブル (x1)
- ☑ Mini-DisplayPort ケーブル (x1)
- ☑ 1/0シールド
- ✓ 2-way SLIブリッジコネクター (x1)
- ✓ 2-way CrossFireブリッジコネクター (x1)

上記、ボックスの内容は参照用となります。実際の同梱物はお求めいただいた製品パッケージにより異なる場合があります。また、ボックスの内容については、予告なしに変更する場合があります。

GA-X99P-SLI マザーボードのレイアウト

 - 8 -	

第1章 ハードウェアの取り付け

1-1 取り付け手順

マザーボードには、静電気放電(ESD) の結果、損傷する可能性のある精巧な電子回路やコンポーネントが数多く含まれています。取り付ける前に、ユーザーズマニュアルをよくお読みになり、以下の手順に従ってください。

- 取り付け前に、PCケースがマザーボードに適していることを確認してください。
- 取り付ける前に、マザーボードの S/N (シリアル番号) ステッカーまたはディーラーが提供する保証ステッカーを取り外したり、はがしたりしないでください。これらのステッカーは保証の確認に必要です。
- マザーボードまたはその他のハードウェアコンポーネントを取り付けたり取り 外したりする前に、常にコンセントからコードを抜いて電源を切ってください。
- ハードウェアコンポーネントをマザーボードの内部コネクターに接続しているとき、しっかりと安全に接続されていることを確認してください。
- マザーボードを扱う際には、金属リード線やコネクターには触れないでください。
- マザーボード、CPU またはメモリなどの電子コンポーネントを扱うとき、静電気放電 (ESD) リストストラップを着用することをお勧めします。ESD リストストラップをお持ちでない場合、手を乾いた状態に保ち、まず金属に触れて静電気を取り除いてください。
- マザーボードを取り付ける前に、ハードウェアコンポーネントを静電防止パッドの上に置くか、静電遮断コンテナの中に入れてください。
- マザーボードから電源装置のケーブルを接続するまたは抜く前に、電源装置がオフになっていることを確認してください。
- パワーをオンにする前に、電源装置の電圧が地域の電源基準に従っていることを確認してください。
- 製品を使用する前に、ハードウェアコンポーネントのすべてのケーブルと電源 コネクターが接続されていることを確認してください。
- マザーボードの損傷を防ぐために、ネジがマザーボードの回路やそのコンポーネントに触れないようにしてください。
- マザーボードの上またはコンピュータのケース内部に、ネジや金属コンポーネントが残っていないことを確認してください。
- コンピュータシステムは、平らでない面の上に置かないでください。
- コンピュータシステムを高温または湿った環境に設置しないでください。
- 取り付け中にコンピュータのパワーをオンにすると、システムコンポーネント が損傷するだけでなく、ケガにつながる恐れがあります。
- 取り付けの手順について不明確な場合や、製品の使用に関して疑問がある場合は、正規のコンピュータ技術者にお問い合わせください。
- アダプタ、延長電源ケーブルまたはテーブルタップを使用する場合は、その取り付けおよびまたは接地手順を必ずお問い合わせください。

1-2 製品の仕様

	±13K
CPU CPU	 LGA2011-3パッケージのIntel®Core"i7シリーズプロセッサをサポートします (最新の CPU サポートリストについては、GIGABYTE の Web サイトに アクセスしてください。) L3 キャッシュは CPUにより異なります
チップセット	◆ Intel® X99 Express チップセット
メモリ	 最大128 GB のシステムメモリをサポートする DDR4 DIMM ソケット (x8) * Windows 32ビットオペレーティングシステムの制限のため、4 GB以上の物理メモリを取り付けた場合、表示される実際のメモリサイズは取り付けた物理メモリのサイズより小さくなります。 4 チャンネルメモリアーキテクチャ DDR4 2133 MHz メモリモジュールのサポート 非 ECC メモリモジュールのサポート XMP (エクストリームメモリプロファイル) メモリモジュールのサポート RDIMM 1Rx8/2Rx8/1Rx4/2Rx4 メモリモジュールのサポート (非 ECC モードで動作) (サポートされる最新のメモリ速度とメモリモジュールについては、GIGABYTEのWebサイトを参照ください。)
グラフィックス	 Intel® Thunderbolt™ 3コントローラー: Intel® Thunderbolt™ 3ポート(x1), DisplayPort および Thunderbolt™ は 4096x2304@60 Hzの最大解像度をサポートします。 * PCアーキテクチャーのパウリソース制限により、使用できるThunderbolt™機器の数は、インストールされたPCI Expressデバイスの数量に依存します。(詳細については1-7章「背面パネルコネクター」を参照してください。) * DisplayPortバージョン1.2をサポート。
■) オーディオ	 Realtek® ALC1150 コーデック ハイディフィニションオーディオ 2/4/5.1/7.1 チャンネル S/PDIFアウトのサポート
E LAN	◆ Intel® GbE LAN チップ (10/100/1000 Mbit)
拡張スロット	 PCI Express x16 スロット (x2)、x16 で動作 (PCIE_1/PCIE_2) 最適のパフォーマンスを出すために、PCI Expressグラフィックスカードを1つしか取り付けない場合、PCIE_1スロットに必ず取り付けてください。PCI Expressグラフィックスカードを2つ取り付ける場合、PCIE_1とPCIE_2スロットに取り付けることをお勧めします。 PCI Express x16 スロット (x2)、x8 で動作 (PCIE_3/PCIE_4) PCIE_4スロットは、PCIE_1スロットと帯域を共有します。また、PCIE_3スロットは、PCIE_2スロットと帯域を共有します。PCIE_4/PCIE_3スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2スロットが使用されていると、PCIE_2 PCIE_2 PCIE
	いるとき、PCIE_1/PCIE_2スロットは最大x8 モードで作動します。 ・17-5820KのCPUD 使用した場合、PCIE_2 スロットはx8のモードで動作します。 (すべてのPCI Express x16 スロットはPCI Express 3.0規格に準拠しています。) ◆ PCI Express x1 スロット(x2) (PCI Express x1スロットはPCI Express 2.0規格に準拠しています。)
マルチグラフ ィックステクノ ロジ	 NVIDIA® Quad-GPU SLI™と4-way/3-way/2-way NVIDIA® SLI™テクノロジーのサポート AMD Quad-GPU CrossFireX™と4-way/3-way/2-way AMD CrossFire™テクノロジーのサポート * 4-way NVIDIA® SLI™ 構成は、i7-5820K CPU が取り付けられている場合、サポート
	されません。3-way SLI 構成を設定する場合は、「1-6 AMD CrossFire"/NVIDIA® SLI™ 構成の設定」を参照してください。
	 チップセット: M.2 コネクター (x1) (Socket 3、M key、タイプ 2242/2260/2280 PCIe x4/x2/x1 SSD 対応) SATA Express コネクター (x1) SATA 6Gb/s コネクター (x6) (SATA3 0~5) SATA RAID 0、RAID 1、RAID 5、および RAID 10 のサポート M.2 PCIe SSD または SATA Express デバイスが取り付けられている場合、AHCI モードのみがサポートされます。

ストレージイ・ チップセット: シターフェイス SATA 6Gb/s コネクター (x4) (sSATA3 0~3)、IDE および AHCI モード のみをサポートします (SATA3 0~5 ポート上にインストールされているオペレーティングシス テムを sSATA3 0~3 ポート上で使用することはできません。) **USB** チップセット+Intel® Thunderbolt™ 3 コントローラー: 背面パネルに USB 3.1 対応USB Type-C™ポート搭載 (x1) 背面パネルに USB 3.1 Type-A ポート(赤)搭載 (x1) チップセット+Renesas® USB 3.0 ハブ: 背面パネルに3つのUSB3.0/2.0ポート チップセット: USB 3.0/2.0ポート (x4) (内部USBヘッダ経由で使用可能) USB 2.0/1.1ポート(x8)(背面パネルに4つのポート、内部USBヘッダ を通して4ポートが使用可能) 内部コネクター 24 ピン ATX メイン電源コネクター (x1) 8 ピン ATX 12V 電源コネクター (x1) PCle 電源コネクター (x1) M.2 ソケット3 コネクター (x1) SATA Express コネクター (x1) SATA 6Gb/s コネクター (x10) CPU ファンヘッダ (x1) 水冷ファンヘッダ (CPU_OPT) (x1) システムファンヘッダ (x3) 前面パネルヘッダ (x1) 前面パネルオーディオヘッダ (x1) S/PDIF アウトヘッダ (x1) USB 3.0/2.0 ヘッダ (x2) USB 2.0/1.1 ヘッダ (x2) トラステッドプラットフォームモジュール(TPM)ヘッダ (x1) CMOSクリアジャンパ (x1) 背面パネルの PS/2 キーボード/マウスポート (x1) コネクター DisplayPort インポート (x1) USB 3.1 に対応する USB Type-C™ポート (x1) USB 3.1 Type-A ポート (赤) (x1) USB 3.0/2.0ポート (x3) USB 2.0/1.1ポート (x4) RJ-45ポート (x1) 光学 S/PDIF アウトコネクター (x1) オーディオジャック(x5)(センター/サブウーファースピーカーアウト、リ アスピーカーアウト、ラインイン、ラインアウト、マイクイン) ⋒ 1/0 コント iTE® I/O コントローラーチップ 「ローラ-ハードウェア モニタ システム電圧の検出

ファン速度コントロール機能のサポートについては、取り付けたクーラ

CPU/システム/チップセット温度検出 CPU/CPU OPT/システムファン速度検出 CPU/システム/チップセット過熱警告 CPU/CPU OPT/システムファンの異常警告 CPU/CPU OPT/システムファン速度制御

一によって異なります。

- 128 Mbit フラッシュ (x2)
- 正規ライセンス版AMI UEFI BIOSを搭載
- DualBIOS™ のサポート
- PnP 1.0a, DMI 2.7, WfM 2.0, SM BIOS 2.7, ACPI 5.0

独自機能

- APP Center のサポート
 - * App Center で使用可能なアプリケーションは、マザーボードのモデルに よって異なります。各アプリケーションのサポート機能もマザーボード のモデルによって異なります。
 - @BIOS
 - Ambient LED
 - EasyTune
 - EZ Setup
 - Fast Boot
 - Cloud Station
 - ON/OFF Charge
 - Smart TimeLock

 - Smart Recovery 2
 - System Information Viewer
 - **USB Blocker**
 - V-Tuner
- Q-Flash のサポート
- Smart Switch のサポート
- Xpress Install のサポート

- Norton® インターネットセキュリティ (OEM バージョン)
- Intel® Smart Response Technology
 - cFosSpeed

- Windows 10/8.1 64-bit のサポート
- Windows 7 32-bit/64-bit のサポート
 - * Windows7をインストールする前に、GIGABYTEのWebサイトから「Windows USB Installation Tool」をダウンロードし、Windows 7インストール用USBメ モリを作成してWindows 7起動可能なUSBメモリから起動してインストー ルしてください。

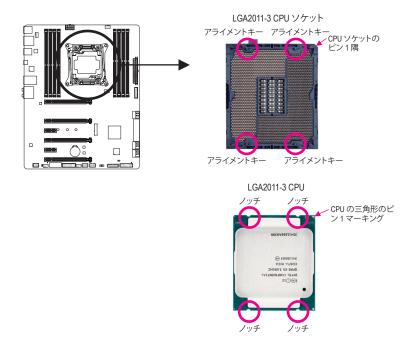
フォームフ アクタ

- ATXフォームファクタ、30.5cm x 24.4cm
- * GIGABYTE は、予告なしに製品仕様と製品関連の情報を変更する場合があります。

CPU、メモリモジュール、SSD、および M.2 デバイスのサポートリストについては、 🖁 GIGABYTE の Web サイトにアクセスしてください。

同じました ポート\ユーティリティリストページにアクセスしてください。

1-3 CPU および CPU クーラーの取り付け



CPU を取り付ける前に次のガイドラインをお読みください:

- マザーボードが CPU をサポートしていることを確認してください。 (最新の CPU サポートリストについては、GIGABYTE の Web サイトにアクセスしてください。)
- ハードウェアが損傷する原因となるため、CPU を取り付ける前に必ずコンピュータのパワーをオフにし、コンセントから電源コードを抜いてください。
- CPU のピン 1 を探します。CPU は間違った方向には差し込むことができません。(または、CPU の両側のノッチと CPU ソケットのアライメントキーを確認します。)
- CPU の表面に熱伝導グリスを均等に薄く塗ります。
- CPU クーラーを取り付けずに、コンピュータのパワーをオンにしないでください。
 CPU が損傷する原因となります。
- CPU の仕様に従って、CPU のホスト周波数を設定してください。ハードウェアの仕様を超えたシステムバスの周波数設定は周辺機器の標準要件を満たしていないため、お勧めできません。標準仕様を超えて周波数を設定したい場合は、CPU、グラフィックスカード、メモリ、ハードドライブなどのハードウェア仕様に従ってください。

1-3-1 CPU を取り付ける

A. マザーボード CPU ソケットのアライメントキーおよび CPU のノッチを確認します。

B. 以下のステップに従って、CPUをマザーボードのCPUソケットに正しく取り付けてください。

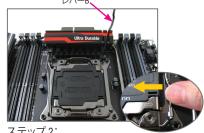
- CPU を取り付ける前に、CPU の損傷を防ぐためにコンピュータのパワーをオフにし、コ ンセントから電源コードを抜いてください。
- ソケットピンを保護するために、CPUがCPUソケットに挿入されている場合を除き保護 プラスチックカバーを取り外さないでください。

ステップ 1:

「アンロック」マーク「

「

つ」(以下にレバーA と表示)のすぐ傍にあるレバーをソケットか ら離すように押し下げ、解除します。


ステップ 3:

レバーAをそっと押して、ロードプレートを 上げます。ロードプレートを開きます。注: ロードプレートが開いたら、ソケットピン に触れないでください。

ステップ 5:

CPUが適切に挿入されたら、ロードプレー トを慎重に戻します。その保持タブの下 にレバーBを固定します。

ステップ 2:

「ロック」マーク「台」(以下にレバーBと表 示) のすぐ傍にあるレバーをソケットから 離すように押し下げます。

ステップ 4:

CPU を親指と人差し指で抑えます。金属ソ ケットフレーム上の三角マークに CPU の ピン 1 マーク(三角)を合わせ、慎重に垂 直に CPU をソケットに挿入します。

ステップ 6:

最後に、保持タブの下でレバーAを固定し CPUの取り付けを完了します。その後、慎 重にプラスチック製のカバーを取り外し ます。このカバーは大切に保管し、CPUが 取り付けられていないときは常にソケッ トに取り付けてください。

1-3-2 CPU クーラーを取り付ける

以下のステップを参照して、マザーボードにCPUクーラーを正しく取り付けます。(実際の取り付けプロセスは、使用するCPUクーラーによって異なることがあります。CPUクーラーについては、ユーザーズマニュアルを参照してください。)

ステップ 1: 取り付けた CPU の表面に熱伝導グリスを 均等に薄く塗ります。

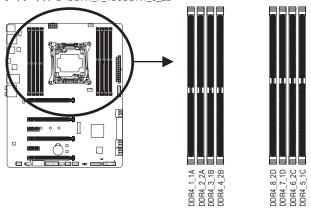
ステップ 2: CPUの上にクーラーを置き、ILMの取り付け穴に4本の取り付けねじを合わせます。

ステップ3: 片方の手でクーラーを持ち、もう一方の手でドライバーを使用してねじを対角に順番に締め付けます。まず1本のねじを数回締め付けてたら、その対角方向にあるねじも同じように締め付けます。他のペアにも同様の手順を取ります。

ステップ4: 最後に、CPU クーラーの電源コネクター をマザーボードの CPU ファンヘッダ (CPU FAN) に取り付けてください。

、CPU クーラーと CPU の間の熱伝導グリス/テープは CPU にしっかり接着されているため、CPU クーラーを取り外すときは、細心の注意を払ってください。CPU クーラーを不適切に取り外すと、CPU が損傷する恐れがあります。

1-4 メモリの取り付け


メモリを取り付ける前に次のガイドラインをお読みください:

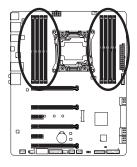
- マザーボードがメモリをサポートしていることを確認してください。同じ容量、ブランド、速度、およびチップのメモリをで使用になることをお勧めします。 (サポートされる最新のメモリ速度とメモリモジュールについては、GIGABYTEのWebサイトを参照ください。)
- ハードウェアが損傷する原因となるため、メモリを取り付ける前に必ずコンピュータのパワーをオフにし、コンセントから電源コードを抜いてください。
- メモリモジュールは取り付け位置を間違えぬようにノッチが設けられています。メ モリモジュールは、一方向にしか挿入できません。メモリを挿入できない場合は、 方向を変えてください。

1-4-1 4チャンネルメモリ設定

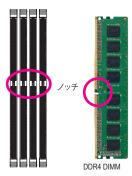
このマザーボードには8つのDDR4メモリソケットが装備されており、4 チャンネルテクノロジをサポートします。メモリを取り付けた後、BIOS はメモリの仕様と容量を自動的に検出します。8 つの DDR4 メモリソケットが 4つのチャンネルに分けられ、各チャンネルには次のように 2つのメモリソケットがあります:

- → チャンネル A: DDR4 1 1A、DDR4 2 2A
- → チャンネル B:DDR4_3_1B、DDR4_4_2B
- → チャンネル C:DDR4_5_1C、DDR4_6_2C
- → チャンネル D:DDR4 7 1D、DDR4 8 2D

▶ インストールするメモリモジュールの数に対応したメモリの取り付けについては、以下の表を参照してください。


(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
	DDR4_1_1A	DDR4_2_2A	DDR4_3_1B	DDR4_4_2B	DDR4_8_2D	DDR4_7_1D	DDR4_6_2C	DDR4_5_1C
1つのモジュール			•					
2つのモジュール			•			•		
4 つのモジュール	•		•			•		•
6 つのモジュール	•		•	•	•	•		•
8 つのモジュール	•	•	•	•	•	•	•	•

- 注 1:メモリを取り付けるとき、DDR4_1_1A、DDR4_3_1B、DDR4_5_1C、およびDDR4_7_1Dなど各 チャンネルの最初のソケットから始めていることを確認してください。
- 注2:RDIMM メモリを使用している場合、それが1Rx8 メモリであることを確認してください。
- 注3:メモリの互換性を確保するために、同時にRDIMM と UDIMM メモリを取り付けることをお勧めしません。


1-4-2 メモリの取り付け

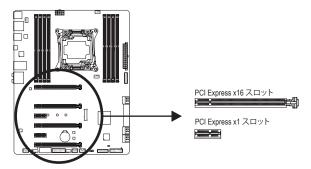
メモリモジュールを取り付ける前に、メモリモジュールの損傷を防ぐためにコンピュータ のパワーをオフにし、コンセントから電源コードを抜いてください。DDR4 はDDR3とDDR2 DIMMとの互換性はありません。このマザーボードにDDR4 DIMM が取り付けていることを 確認してください。

DDR4 メモリモジュールにはノッチが付いているため、一方向にしかフィットしません。以下のステップに従って、メモリソケットにメモリモジュールを正しく取り付けてください。

ステップ 1:

メモリモジュールの方向に注意します。メモリソケットの両端の保持クリップを広げます。左の図に示すように、指をメモリの上に置き、メモリを押し下げ、メモリソケットに垂直に差し込みます。

ステップ 2:


メモリモジュールがしっかり差し込まれると、ソケットの右端のクリップがカチッと音を立てて所定の位置に収まります

1-5 拡張カードを取り付ける

拡張カードを取り付ける前に次のガイドラインをお読みください:

- 拡張カードがマザーボードをサポートしていることを確認してください。拡張カードに付属するマニュアルをよくお読みください。
- ハードウェアが損傷する原因となるため、拡張カードを取り付ける前に必ずコンピュータのパワーをオフにし、コンセントから電源コードを抜いてください。

以下のステップに従って、拡張カードを拡張スロットに正しく取り付けてください。

- 1. カードをサポートする拡張スロットを探します。PCケース背面パネルから、金属製スロットカバーを取り外します。
- 2. カードをスロットに合わせ、スロットに完全にはまりこむまでカードを押し下げます。
- 3. カードの金属接点がスロットに完全に挿入されていることを確認します。
- 4. カードの金属ブラケットをねじでPCケース背面パネルに固定します。
- 5. 拡張カードをすべて取り付けたら、PCケースカバーを元に戻します。
- 6. コンピュータの電源をオンにします。必要に応じて、BIOSセットアップに移動し拡張カード に必要なBIOS変更を行います。
- 7. 拡張カードに付属するドライバをオペレーティングシステムにインストールします。

例:PCI Expressグラフィックスカードの取り付けと取り外し:

 グラフィックスカードを取り付ける: カードの上端がPCI Expressスロットに完全 に挿入されるまで、そっと押し下げます。 カードがスロットにしっかり装着され、ロッ クされていることを確認します。

カードを取り外す: スロットのレバーをそっと押し返し、カードをスロットからまっすぐ上 に持ち上げます。

AMD CrossFire MVIDIA® SLI™構成のセットアップ 1-6

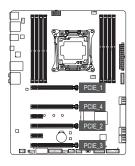
A. システム要件

- Windows 10/8.1/7 オペレーティングシステム
- CrossFire/SLI対応のマザーボード(PCI Express x16スロットを2つ以上および接続ドライバ付き)
- 同じブランドのCrossFire/SLI対応グラフィックスカードおよびチップと正しいドライバ (3-way/4-way CrossFireテクノロジーをサポートする現在のGPUには、ATI Radeon™ HD 3800、HD 4800、HD 5800シリーズ、およびAMD Radeon™ HD 6800、HD 6900、HD 7800、とHD 7900シリーズがあ ります。3-way/4-way SLI技術をサポートする現在のGPUには、NVIDIA® 8800 GTX、8800 Ultra、9800 GTX、GTX 260、GTX 280、GTX 470、GTX 480、GTX 570、GTX 580、GTX 590、およびGTX 600シリーズ などがあります。最新の GPU のサポートす情報については、AMD/NVIDIA® のウェブサイトを 参照してください。)(注1)
- CrossFire(注2)/SLIブリッジコネクター
- 十分な電力のある電源装置を推奨します(電源要件については、グラフィックスカードの マニュアルを参照してください)

B. グラフィックスカードを接続する

ステップ 1:

「1-5 拡張カードを取り付ける」のステップに従って、PCI Express x16スロットにのCrossFire/SLIグラフィックスカードを取り付けます。 ステップ 2:


カードの上部にあるCrossFire/SLI金縁コネクターにCrossFire (注2)/ SLIブリッジコネクターを挿入します。

ステップ 3:

ディスプレイカードを PCIE_1 スロットに差し込みます。

▶ i7-5960X または i7-5930K CPU が取り付けられている場合は、 下の表を参照してください。

	グラフィックカ ード1枚	グラフィックカ ード2枚	グラフィックカ ード3枚	グラフィックカ ード4枚
PCIE_1	•	•	•	•
PCIE_4				•
PCIE_2		•	•	•
PCIE_3			•	•

※
※
※
3-way SLI 構成を設定するには、GC-3SLI-X99 ブリッジコネクターを使用します。

▶ i7-5820K CPU を用いて 3-way SLI 構成を設定するには、下の表を参照してください。 GC-3SLI ブリッジコネクターを使用してください。

	グラフィックカ ード1枚	グラフィックカ ード2枚	グラフィックカ ード3枚
PCIE_1	•	•	•
PCIE_4			•
PCIE_2		•	•
PCIE_3			

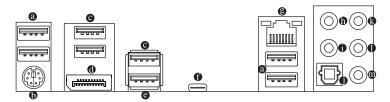
- (注1) 4-way SLI 構成は、i7-5820K CPU が取り付けられている場合、サポートされません。
- ブリッジコネクターはグラフィックスカードによって必要としない場合があります。 (注2)

- CrossFire/SLIテクノロジを有効にするための手順とドライバ画面は、グラフィックスカードにより わずかに異なります。CrossFire/SLI を有効にする方法について、詳細はグラフィックスカードに 付属のマニュアルを参照してください。
- 2つ以上のグラフィックカードが取り付けられている場合、電源装置からATX4Pコネクターに SATA電源ケーブルを接続してシステムの安定性を確保するようお勧めします。

C. グラフィックスカードドライバを構成する

C-1.CrossFire 機能を有効にする

オペレーティングシステムにグラフィックスカードドライバを取り付けた後、AMD Catalyst Control Centerに移動します。Performance\AMD CrossFireX を閲覧し、Enable AMD CrossFireX を有効にするチェックボックスが選択されていることを確認します。お使いのシステムに2枚以上のCrossFireカードをお持ちである場合、使用したいGPUの組み合わせを選択し、そしてApplyを実行してください。(使用可能な組み合わせのオプションは、取り付けたグラフィックスカードの数によって異なります。)


C-2.SLI機能を有効にする

オペレーティングシステムにグラフィックスカードドライバを取り付けた後、NVIDIA Control Panelパネルに移動します。Configure SLI, Surround, PhysX の設定画面を閲覧し、Maximize 3D performanceが有効になっていることを確認してください。

1-7 背面パネルのコネクター

- USB 2.0/1.1 ポート
 - USB ポートは USB 2.0/1.1 仕様をサポートします。
- PS/2キーボード/マウスポートこのポートを使用して、PS/2マウスまたはキーボードを接続します。
- USB 3.0/2.0 ポート

USB 3.0 ポートは USB 3.0 仕様をサポートし、USB 2.0/1.1 仕様と互換性があります。このポートを USB デバイス用に使用します。

- DisplayPort インポート
 - DisplayPortインポートは、マザーボードへのDisplayPort入力で使用します。詳しくは、以下のThunderbolt 3ポート項目をご参照ください。
- USB 3.1 Type-A ポート(赤)

USB 3.1 ポートは USB 3.1 仕様をサポートし、USB 3.0/2.0/1.1 仕様と互換性があります。このポートを USB デバイス用に使用します。

Thunderbolt[™] 3 ポート (USB Type-C[™] ポート)

このポートはDisplayPort および Thunderbolt" ディスプレイ出力に対応しています。アダプター経由で、DisplayPort/Thunderbolt"ディスプレイを接続することが可能です。このThunderbolt"ポートは最大6個のThunderbolt"機器をデイジーチェーン接続できます。しかし、PCアーキテクチャーの仕様上、PCI Express機器の数により接続可能なThunderbolt"機器の数が変化します。Thunderbolt"設定はBIOS上の「Peripherals\Intel(R) Thunderbolt」項目から調整できます。DisplayPort対応モニター使用時の最大解像度は4096x2304@60 Hzです。しかし、使用する機器によって対応している最大解像度は異なります。さらに、Thunderbolt"ポートはリバーシブル接続可能であり、USB 3.1 (USB3.0/2.0互換あり) にも対応しています。このポートを USB デバイス用に使用します。

DisplayPort または Thunderbolt 機器を接続するには、以下の手順で行ってください。

ステップ 1:

付属の DisplayPort ケーブル (またはMini-DisplayPort ケーブル) でグラフィックスカ ードと DisplayPort インポートを接続して ください。

ステップ 2:

DisplayPort または Thunderbolt™ 機器をThunderbolt™ 3 コネクターに接続してください。

Gigabit イーサネット LAN ポートは、最大 1 Gbps のデータ転送速度のインターネット接続を提供します。以下は、LAN ポート LED の状態を表します。

接続/ アクティビティ 接続/速度 LED:

アクティビティ LED:

状態	説明
オレンジ	1 Gbps のデータ転送速度
緑	100 Mbps のデータ転送速度
オフ	10 Mbps のデータ転送速度

状態	説明
点滅	データの送受信中です
オン	データを送受信していません

センター/サブウーファースピーカーアウト(オレンジ)

このオーディオ端子を使って、5.1/7.1チャンネルオーディオ構成のセンター/サブウーファースピーカーを接続します。

● リアスピーカーアウト(黒)

この端子は4/5.1/7.1 チャンネルのオーディオ構成でリアスピーカーを接続するために使用することができます。

光学 S/PDIF アウトコネクター

このコネクターにより、デジタル光学オーディオをサポートする外部オーディオシステムでデジタルオーディオアウトを利用できます。この機能を使用する前に、オーディオシステムに光学デジタルオーディオインコネクターが装備されていることを確認してください。

◎ ラインイン(青)

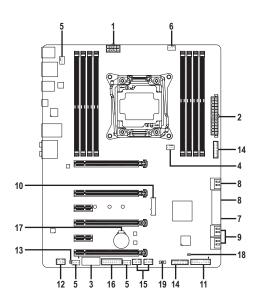
ラインインジャックです。光ドライブ、ウォークマンなどのデバイスのラインインの場合、このオーディオ端子を使用します。

● ラインアウト(緑)

ラインアウト端子です。この音声出力ジャックは、音声増幅機能をサポートしています。より良い音質をで使用いただく場合、このジャックにヘッドフォン/スピーカーに接続することを推奨します。(実際の効果は、使用されているデバイスによって異なる場合があります)。ヘッドフォンまたは2 チャンネルスピーカーの場合、このオーディオ端子を使用します。この端子は4/5.1/7.1 チャンネルのオーディオ構成でフロントスピーカーを接続するために使用することができます。

の マイクイン(ピンク)

マイクイン端子です。マイクは、このジャックに接続する必要があります。



オーディオジャックは、異なる機能を実行するためオーディオソフトウェアを介して 再構成することができます(サポートする機能は、ハードウェアの仕様により異なり ます)。側面スピーカーを設置する場合、オーディオジャックから側面スピーカーに 出力するよう設定しなおす必要があります。マイクだけは、デフォルトのマイクイン ジャックに接続する必要があります。ソフトウェアについては、GIGABYTEのウェブサイトにアクセスしてください。

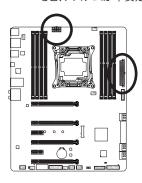
- ・背面パネルコネクターに接続されたケーブルを取り外す際は、先に周辺機器からケーブルを取り外し、次にマザーボードからケーブルを取り外します。
- ケーブルを取り外す際は、コネクターから真っ直ぐに引き抜いてください。ケーブルコネクター内部でショートする原因となるので、横に揺り動かさないでください。

1-8 内部コネクター

1)	ATX_12V_2X4	11)	F_PANEL
2)	ATX	12)	F_AUDIO
3)	ATX4P	13)	SPDIF_O
4)	CPU_FAN	14)	F_USB30_1/F_USB30_2
5)	SYS_FAN1/2/3	15)	F_USB1/F_USB2
6)	CPU_OPT	16)	TPM
7)	SATA_EXPRESS	17)	BAT
8)	SATA3 0/1/2/3/4/5	18)	CLR_CMOS
9)	sSATA3 0/1/2/3	19)	CPU_MODE
10)	M2_32G		

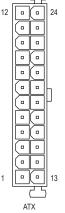
外部デバイスを接続する前に、以下のガイドラインをお読みください:

- まず、デバイスが接続するコネクターに準拠していることを確認します。
- デバイスを取り付ける前に、デバイスとコンピュータのパワーがオフになっている ことを確認します。デバイスが損傷しないように、コンセントから電源コードを抜き ます。
- デバイスを装着した後、コンピュータのパワーをオンにする前に、デバイスのケーブルがマザーボードのコネクターにしっかり接続されていることを確認します。


1/2) ATX_12V_2X4/ATX (2x4 12V 電源コネクターと 2x12 メイン電源コネクター)

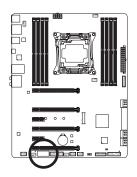
電源コネクターを使用すると、電源装置はマザーボードのすべてのコンポーネントに安定した電力を供給することができます。電源コネクターを接続する前に、まず電源装置のパワーがオフになっていること、すべてのデバイスが正しく取り付けられていることを確認してください。電源コネクターは、正しい向きでしか取り付けができないように設計されております。電源装置のケーブルを正しい方向で電源コネクターに接続します。

12V 電源コネクターは、主に CPU に電力を供給します。12V 電源コネクターが接続されていない場合、コンピュータは起動しません。


拡張要件を満たすために、高い消費電力に耐えられる電源装置をご使用になることをお勧めします(500W以上)。必要な電力を供給できない電源装置をご使用になると、システムが不安定になったり起動できない場合があります。

ATX_12V_2X4:

ピン番号	定義
1	GND (2x4ピン12Vのみ)
2	GND (2x4ピン12Vのみ)
3	GND
4	GND
5	+12V (2x4ピン12Vのみ)
6	+12V (2x4ピン12Vのみ)
7	+12V
8	+12V

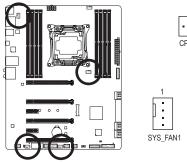


ATX:

	ピン番号	定義	ピン番号	定義
ſ	1	3.3V	13	3.3V
ſ	2	3.3V	14	-12V
	3	GND	15	GND
ſ	4	+5V	16	PS_ON (ソフトオン/オフ)
ſ	5	GND	17	GND
	6	+5V	18	GND
	7	GND	19	GND
	8	電源良好	20	NC
	9	5VSB (スタンバイ +5V)	21	+5V
	10	+12V	22	+5V
	11	+12V (2x12 ピン ATX 専用)	23	+5V (2x12 ピン ATX 専用)
Į	12	3.3V (2x12 ピン ATX 専用)	24	GND (2x12ピンATX専用)

3) ATX4P (PCIe電源コネクター)

電源コネクターは、オンボードPCI Express x16スロットに補助電源を提供します。2つ以上の グラフィックカードが取り付けられている場合、電源装置からATX4Pコネクターに電源ケー ブルを接続してシステムの安定性を確保するようお勧めします。



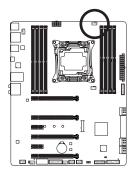
定義
VCC
GND
GND
+12V

4/5) CPU FAN/SYS FAN1/2/3 (ファンヘッダ)

このマザーボードのファンヘッダはすべて4ピンです。ほとんどのファンヘッダは、誤挿入 防止設計が施されています。ファンケーブルを接続するとき、正しい方向に接続してくだ さい (黒いコネクターワイヤはアース線です)。速度コントロール機能を有効にするには、 ファン速度コントロール設計のファンを使用する必要があります。最適の放熱を実現する ために、PCケース内部にシステムファンを取り付けることをお勧めします。

0. 0			
ピン番号	定義		
1	GND		
2	+12V		
3	検知		
4	速度制御		

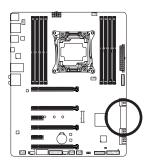
SYS FAN1/2/3:

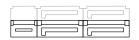

ピン番号	定義
1	GND
2	速度制御
3	検知
4	VCC

- CPUとシステムを過熱から保護するために、ファンケーブルをファンヘッダに接続 していることを確認してください。冷却不足はCPUが損傷したり、システムがハン グアップする原因となります。
- これらのファンヘッダは設定ジャンパブロックではありません。ヘッダにジャンパ キャップをかぶせないでください。

6) CPU_OPT (水冷式 CPU ファンヘッダ)

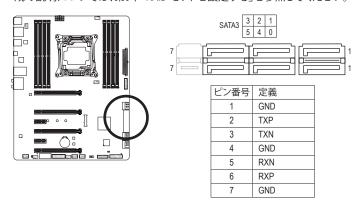
ファンヘッダは 4 ピンで、簡単に接続できるように設計されています。ファンケーブルを接続するとき、正しい方向に接続してください (黒いコネクターワイヤはアース線です)。速度コントロール機能を有効にするには、ファン速度コントロール設計のファンを使用する必要があります。



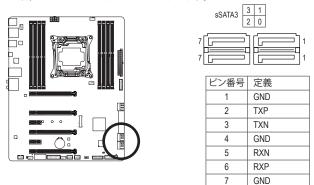


ピン番号	定義
1	GND
2	速度制御
3	検知
4	VCC

7) SATA_EXPRESS (SATA Express コネクター)

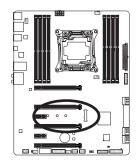

SATA Express コネクターは、単一の SATA Express デバイスをサポートします。

8) SATA3 0/1/2/3/4/5 (SATA 6Gb/sコネクター)


SATA コネクターはSATA 6Gb/s に準拠し、SATA 3Gb/s および SATA 1.5Gb/s との互換性を有しています。それぞれの SATA コネクターは、単一の SATA デバイスをサポートします。Intel® チップセット は、RAID 0、RAID 1、RAID 5、および RAID 10 をサポートします。RAIDアレイの構成の説明については、第3章「RAID セットを設定する」を参照してください。

SATAポート ホットプラグを有効にするには、第2章を参照してください、「BIOSセットアップ」、「チップセット/PCH SATA設定」を参照してください。

9) sSATA3 0/1/2/3 (SATA 6Gb/sコネクター)


SATA コネクターはSATA 6Gb/s に準拠し、SATA 3Gb/s および SATA 1.5Gb/s との互換性を有しています。AHCI および IDE モードのみがサポートされます。それぞれの SATA コネクターは、単一の SATA デバイスをサポートします。

SATAポート ホットプラグを有効にするには、第2章を参照してください、「BIOSセットアップ」、「チップセット/PCH sSATA設定」を参照してください。

10) M2_32G (M.2 ソケット3 コネクター)

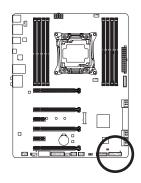
このコネクターにM.2対応SSDを増設することができます。

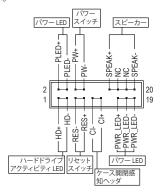
M.2コネクターにM.2対応SSDに増設する場合、以下の手順に従ってください。

ステップ 1: スクリュードライバーを使用してマザーボードからネジとナットを緩めてください。取り付け穴の位置を確認してから、最初にナットを締めます。

ステップ 2: コネクターに斜めの角度でM.2対応SSDを スライドさせます。

ステップ 3: M.2対応SSDを下に押してからネジで固定 します。


ステップ 4: 上の写真のように取り付けを完了します。

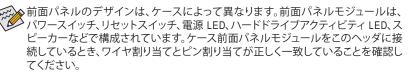


マザーボード上にM.2対応SSD用の3つの長さ調整穴があります。インストールするM.2対応SSDを固定する適切な穴を選択し、ネジとナットを締め直してください。

11) F_PANEL (前面パネルヘッダ)

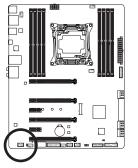
下記のピン配列に従い、パワースイッチ、リセットスイッチ、スピーカー、PCケース開閉感知へッダ、ケースのインジケーター(パワーLEDやHDD LEDなど)を接続します。接続する際には、+とーのピンに注意してください。

• PLED/PWR LED (電源LED、黄/紫):


システムステータス	LED
S0	オン
S3/S4/S5	オフ

PCケース前面パネルの電源ステータスインジケーターに接続します。システムが作動しているとき、LED はオンになります。システムが S3/S4 スリープ状態に入っているとき、またはパワーがオフになっているとき (S5)、LED はオフになります。

• PW (パワースイッチ、赤):


PCケース前面パネルの電源ステータスインジケーターに接続します。パワースイッチを使用してシステムのパワーをオフにする方法を設定できます (詳細については、第 2章、「BIOSセットアップ」、「電力管理、」を参照してください)。

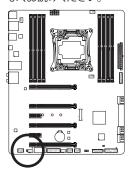
- SPEAK (スピーカー、オレンジ):
 - PCケースの前面パネル用スピーカーに接続します。システムは、ビープコードを鳴らす ことでシステムの起動ステータスを報告します。システム起動時に問題が検出されな い場合、短いビープ音が1度鳴ります。
- **HD** (ハードドライブアクティビティ LED、青): PCケース前面パネルのハードドライブアクティビティ LED に接続します。ハードドライブがデータの読み書きを行っているとき、LED はオンになります。
- RES (リセットスイッチ、緑): PCケース前面パネルのリセットスイッチに接続します。コンピュータがフリーズし通常の再起動を実行できない場合、リセットスイッチを押してコンピュータを再起動します。
- CI (PCケース開閉感知ヘッダ、グレー): PCケースカバーが取り外されている場合、PCケースの検出可能なPCケース開閉感知スイッチ/センサーに接続します。この機能は、PCケース開閉感知スイッチ/センサーを搭載したPCケースを必要とします。
- NC (オレンジ):接続なし。

12) F_AUDIO (前面パネルオーディオヘッダ)

前面パネルのオーディオヘッダは、Intel ハイデフィニションオーディオ (HD) と AC'97 オーディオをサポートします。PCケース前面パネルのオーディオモジュールをこのヘッダに接続することができます。モジュールコネクターのワイヤ割り当てが、マザーボードヘッダのピン割り当てに一致していることを確認してください。モジュールコネクターとマザーボードヘッダ間の接続が間違っていると、デバイスは作動せず損傷することがあります。

HD 前面パネルオーディ AC'97 前面パネルオーオの場合: ディオの場合:

		,,	_
ピン番号	定義	ピン番号	定義
1	MIC2_L	1	MIC
2	GND	2	GND
3	MIC2_R	3	MICパワー
4	-ACZ_DET	4	NC
5	LINE2_R	5	ラインアウト(右)
6	検知	6	NC
7	FAUDIO_JD	7	NC
8	ピンなし	8	ピンなし
9	LINE2_L	9	ラインアウト(左)
10	検知	10	NC

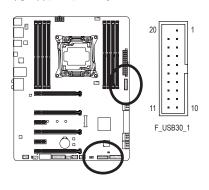


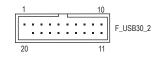
- ・前面パネルのオーディオヘッダは、標準で HD オーディオをサポートしています。
- ・ オーディオ信号は、前面と背面パネルのオーディオ接続の両方に同時に流れて います。
- PCケースの中には、前面パネルのオーディオモジュールを組み込んで、単一コネクターの代わりに各ワイヤのコネクターを分離しているものもあります。ワイヤ割り当てが異なっている前面パネルのオーディオモジュールの接続方法の詳細については、PCケースメーカーにお問い合わせください。

13) SPDIF O (S/PDIF出力用ヘッダ)

このヘッダはデジタルS/PDIF出力をサポートし、デジタルオーディオ出力用に、マザーボードからグラフィックスカードやサウンドカードのような特定の拡張カードにS/PDIFデジタルオーディオケーブル(拡張カードに付属)を接続します。例えば、グラフィックスカードの中には、HDMIディスプレイをグラフィックスカードに接続しながら同時にHDMIディスプレイからデジタルオーディオを出力したい場合、デジタルオーディオ出力用に、マザーボードからグラフィックスカードまでS/PDIFデジタルオーディオケーブルを使用するように要求するものもあります。

S/PDIFデジタルオーディオケーブルの接続の詳細については、拡張カードのマニュアルをよくお読みください。

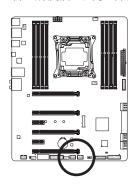




ピン番号	定義
1	SPDIFO
2	GND

14) F_USB30_1/F_USB30_2 (USB 3.0/2.0 ヘッダ)

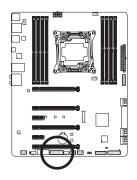
ヘッダは USB 3.0/2.0 仕様に準拠し、2 つの USB ポートが装備されています。USB 3.0/2.0対応 2ポートを装備するオプションの3.5"フロントパネルのご購入については、販売店にお問い合わせください。

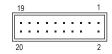


ピン番号	定義	ピン番号	定義
1	VBUS	11	D2+
2	SSRX1-	12	D2-
3	SSRX1+	13	GND
4	GND	14	SSTX2+
5	SSTX1-	15	SSTX2-
6	SSTX1+	16	GND
7	GND	17	SSRX2+
8	D1-	18	SSRX2-
9	D1+	19	VBUS
10	NC	20	ピンなし

15) F_USB1/F_USB2 (USB 2.0/1.1 ヘッダ)

ヘッダは USB 2.0/1.1 仕様に準拠しています。各 USB ヘッダは、オプションの USB ブラケットを介して 2 つの USB ポートを提供できます。オプションの USB ブラケットを購入する場合は、販売店にお問い合わせください。

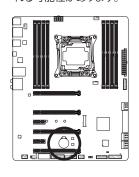

ピン番号	定義
1	電源 (5V)
2	電源 (5V)
3	USB DX-
4	USB DY-
5	USB DX+
6	USB DY+
7	GND
8	GND
9	ピンなし
10	NC



- IEEE 1394 ブラケット (2x5 ピン) ケーブルを USB 2.0/1.1 ヘッダに差し込まないでください。
- USBブラケットを取り付ける前に、USBブラケットが損傷しないように、コンピュータの電源をオフにしてからコンセントから電源コードを抜いてください。

16) TPM (TPMモジュール用ヘッダ)

TPM (TPMモジュール) をこのヘッダに接続できます。

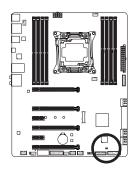


ピン番号	定義	ピン番号	定義
1	LCLK	11	LAD0
2	GND	12	GND
3	LFRAME	13	NC
4	ピンなし	14	ID
5	LRESET	15	SB3V
6	NC	16	SERIRQ
7	LAD3	17	GND
8	LAD2	18	NC
9	VCC3	19	NC
10	LAD1	20	SUSCLK

17) BAT (バッテリー)

バッテリーは、コンピュータがオフになっているとき CMOS の値 (BIOS 設定、日付、および時刻情報など) を維持するために、電力を提供します。バッテリーの電圧が低レベルまで下がったら、バッテリーを交換してください。CMOS 値が正確に表示されなかったり、失われる可能性があります。

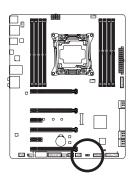
バッテリーを取り外すと、CMOS 値を消去できます:


- 1. コンピュータのパワーをオフにし、電源コードを抜きます。
- 2. バッテリーホルダからバッテリーをそっと取り外し、1 分待ちます。(または、ドライバーのような金属物体を使用してバッテリーホルダの+とーの端子に触れ、5 秒間ショートさせます。)
- 3. バッテリーを交換します。
- 4. 電源コードを差し込み、コンピュータを再起動します。

- バッテリーを交換する前に、常にコンピュータのパワーをオフにしてから電源 コードを抜いてください。
- バッテリーを同等のバッテリーと交換します。バッテリーを正しくないモデルと交換すると、破裂する恐れがあります。
- バッテリーを交換できない場合、またはバッテリーのモデルがはっきり分からない場合、購入店または販売店にお問い合わせください。
- バッテリーを取り付けるとき、バッテリーのプラス側 (+) とマイナス側 (-) の方向に注意してください (プラス側を上に向ける必要があります)。
- 使用済みのバッテリーは、地域の環境規制に従って処理してください。

18) CLR_CMOS (CMOSクリアジャンパー)

このジャンパを使用して BIOS 設定をクリアするとともに、CMOS 値を出荷時設定にリセットします。CMOS値を消去するには、ドライバーのような金属製品を使用して2つのピンに数秒間触れます。


- オープン: Normal
- ショート: CMOSのクリア

- CMOS値を消去する前に、常にコンピュータのパワーをオフにし、コンセントから 電源コードを抜いてください。
- システムが再起動した後、BIOS設定を工場出荷時に設定するか、手動で設定してください (Load Optimized Defaults 選択) BIOS 設定を手動で設定します (BIOS 設定については、第2章「BIOS セットアップ」を参照してください)。

19) CPU_MODE

このスイッチは、CPUオーバークロックの初期設定モードとOCモードに切り替えることができます。

- 1 1: 既定値
- 2:00モード(このモードを使用すると、動作不安定になる場合がありますのでご了承ください。)

第2章 BIOS セットアップ

BIOS (Basic Input and Output System) は、マザーボード上の CMOS にあるシステムのハードウエア のパラメータを記録します。主な機能には、システム起動、システムパラメータの保存、および オペレーティングシステムの読み込みなどを行うパワー オンセルフ テスト (POST) の実行など があります。BIOS には、ユーザーが基本システム構成設定の変更または特定のシステム機能の 有効化を可能にする BIOS セットアッププログラムが含まれています。

電源をオフにすると、CMOSの設定値を維持するためマザーボードのバッテリーが CMOS に必要な電力を供給します。

BIOS セットアッププログラムにアクセスするには、電源オン時の POST 中に <Delete> キーを押します。

BIOS をアップグレードするには、GIGABYTE Q-Flash または @BIOS ユーティリティのいずれかを使用します。

- Q-Flash により、ユーザーはオペレーティングシステムに入ることなく BIOS のアップグレードまたはバックアップを素早く簡単に行えます。
- @BIOS は、インターネットから BIOS の最新バージョンを検索しダウンロードするとともに BIOS を更新する Windows ベースのユーティリティです。

- ・ BIOSの更新は潜在的に危険を伴うため、BIOS の現在のバージョンを使用している ときに問題が発生していない場合、BIOS を更新しないことをお勧めします。BIOS の 更新は注意して行ってください。BIOS の不適切な更新は、システムの誤動作の原因 となります。
- ・ システムの不安定またはその他の予期しない結果を防ぐために、初期設定を変更しないことをお勧めします (必要な場合を除く)。誤ったBIOS設定しますと、システムは起動できません。そのようなことが発生した場合は、CMOS 値を既定値にリセットしてみてください。(CMOS 値を消去する方法については、この章の「Load Optimized Defaults」セクションまたは第1章にあるバッテリーまたは CMOS ジャンパの消去の概要を参照してください。)

2-1 起動画面

コンピュータが起動するとき、次の起動ロゴ画面が表示されます。

機能キー:

:BIOS SETUP\Q-FLASH

<Delete>キーを押してBIOSセットアップに入り、BIOSセットアップでQ-Flashユーティリティにアクセスします。

<F9>:SYSTEM INFORMATION

< F9> キーを押すとシステム情報が表示されます。

<F12>:BOOT MENU

起動メニューにより、BIOS セットアップに入ることなく第 1 起動デバイスを設定できます。 起動メニューで、上矢印キー <↑> または下矢印キー <↓> を用いて第 1 起動デバイスを選択し、次に <Enter> キーを押して確定します。システムはそのデバイスから起動します。 注:起動メニューの設定は 1 回のみ有効です。システム再起動後のデバイスの起動順序は BIOS セットアップの設定の順序となります。

<END>:Q-FLASH

<End> キーを押すと、先に BIOS セットアップに入る必要なく直接 Q-Flash Utility にアクセスします。

2-2 メインメニュー

A. Startup Guide (デフォルト)

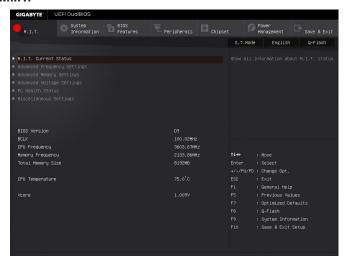
スタートアップガイド画面は、従来の複雑なBIOSセットアップメニューを最も頻繁に使用される オプションを使い易いインターフェイスで表示されます。これは、より迅速かつ簡単に基本的な システム設定を行うことができます。

B. ST Mode (Smart Tweak Mode)

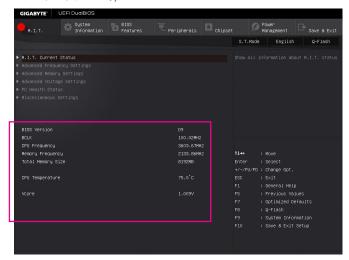
従来の UEFI インターフェイスとは異なり、ST モードでは、ユーザーが様々な設定を簡単にポイント・クリックして、最適なパフォーマンスを得るための調整を行うことができるファンシーかつユーザーフレンドリな BIOS 環境を提供します。STモードは、設定オプション間をマウスを使用して移動することができます。<F2キー>のメニューは、クイック構成や従来のBIOS設定画面に切り替えることができます。

- システムが安定しないときは、Load Optimized Defaults を選択してシステムをその 既定値に設定します。
- 本章で説明された BIOS セットアップメニューは参考用です、項目は、BIOS のバージョンにより異なります。

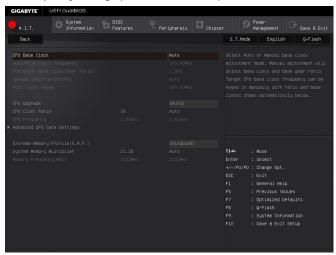
C. Classic Setup


クラシック・セットアップは、従来のBIOSセットアップのインターフェイスです。入力する項目を選択してEnterキーを押して設定します。設定項目間を移動する場合、キーボードの矢印キーを押して設定することができます。または、お使いのマウスで希望する項目を選択することができます。 (サンプル BIOS バージョン:D9)

Classic Setupのファンクションキー


Oldoolo Octapos s	/
<←><→>	選択バーを移動させてセットアップメニューを選択します。
<↑><↓>	選択バーを移動させてメニュー上の設定項目を選択します。
<enter></enter>	コマンドを実行するかまたはメニューに入ります。
<+>/ <page up=""></page>	数値を上昇させるかまたは変更を行います。
<->/ <page down=""></page>	数値を下降させるかまたは変更を行います。
<f1></f1>	ファンクションキーについての説明を表示します。
<f2></f2>	STモードまたは、スタートアップガイド画面に切り替えることができま
	す。
<f5></f5>	現在のメニュー用に前の BIOS 設定を復元します。
<f7></f7>	現在のメニュー用に最適化された BIOS の初期設定を読み込みます。
<f8></f8>	Q-Flash Utility にアクセスします。
<f9></f9>	システム情報を表示します。
<f10></f10>	すべての変更を保存し、BIOS セットアッププログラムを終了します。
<f12></f12>	現在の画面を画像としてキャプチャし。USBドライブに保存します。
<esc></esc>	メインメニュー:BIOS セットアッププログラムを終了します。
	サブメニュー:現在のサブメニューを終了します。

2-3 M.I.T.



オーバークロック設定による安定動作については、システム全体の設定によって異なります。オーバークロック設定を間違って設定して動作させると CPU、チップセット、またはメモリが損傷し、これらのコンポーネントの耐久年数が短くなる原因となります。このページは上級ユーザー向けであり、システムの不安定や予期せぬ結果を招く場合があるため、既定値設定を変更しないことをお勧めします。(誤ったBIOS設定をしますと、システムは起動できません。そのような場合は、CMOS 値を消去して既定値にリセットしてみてください。)

このセクションは、BIOS バージョン、CPU ベースクロック、CPU 周波数、メモリ周波数、合計メモリサイズ、CPU 温度、CPU 電圧などの情報を提供します。

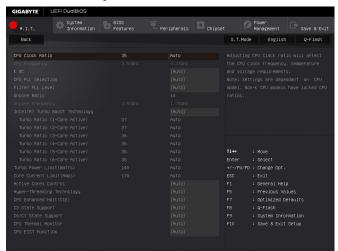
- M.I.T.Current Status (M.I.T 現在のステータス) このセクションには、CPU/メモリ周波数パラメータに関する情報が表示されます。
- ▶ Advanced Frequency Settings (周波数の詳細設定)

 ☐ CPU Base Clock

CPUベースクロックを 0.01 MHz 刻みで手動で設定します。(既定値: Auto) **重要:** CPU 仕様に従って CPU 周波数を設定することを強くお勧めします。

→ Host/PCle Clock Frequency (注)

ホストクロック周波数 (CPU、PCIe、およびメモリの周波数を制御)を 0.01MHz 単位で手動設定することが可能です。


CPU Base Clock が Manual に設定されている場合のみ、この項目を構成できます。

- ▽ Processor Base Clock (Gear Ratio) (注)
 - 複数のプリセットのホスト クロック マルチプライヤによって Host/PCIe Clock Frequency を 逓倍させることで Processor Base Clock を設定できます。 CPU Base Clock が Manual に設定されている場合のみ、この項目を構成できます。
- ▽ Spread Spectrum Control (注)
 CPU/PCI Express スペクトラム拡散を、有効または無効にします。(既定値: Auto)
 CPU Base Clock が Manual に設定されている場合のみ、この項目を構成できます。
- Host Clock Value この値は、Host/PCle Clock Frequency 値と Processor Base Clock(Gear Ratio) の値を掛けること で決定されます。
- CPU Upgrade (注) CPUの周波数を設定できます。設定は搭載するCPUによって異なります。(既定値:Auto)
- ▽ CPU Clock Ratio
 取り付けた CPU のクロック比を変更します。調整可能範囲は、取り付ける CPU によって異なります。
- (注) この機能をサポートするCPUを取り付けている場合のみ、この項目が表示されます。Intel® CPU の固有機能の詳細については、Intel の Web サイトにアクセスしてください。

☐ CPU Frequency

現在作動している CPU 周波数を表示します。

▶ Advanced CPU Core Settings (CPUの詳細設定)

CPU Clock Ratio, CPU Frequency

上の項目の設定は Advanced Frequency Settings メニューの同じ項目と同期しています。

☆ KOC(注)

特定のCPUを使用した場合に、パフォーマンスが向上します。(既定値:Auto)

- ☐ CPU PLL Selection
 - CPU PLLを設定します。Autoでは、BIOSがこの設定を自動的に設定します。(既定値: Auto)
- ▽ Filter PLL Level フィルター PLLを設定します。Auto では、BIOS がこの設定を自動的に設定します。(既定値: Auto)
- Uncore RatioCPU の Uncore ratio を設定できます。調整可能範囲は、使用される CPU によって異なります。
- ♡ Uncore Frequency現在の CPU Uncore 周波数を表示します。
- ▽ Intel(R) Turbo Boost Technology (注)
 Intel® CPU Turbo Boost テクノロジー機能の設定をします。Autoでは、BIOSがこの設定を自動的に設定できます。(既定値: Auto)
- ▽ Turbo Ratio (注) さまざまな数のアクティブなコアに対して、CPU Turbo比を設定できます。Auto では、CPU仕様に従って CPU Turbo 比を設定します。(既定値: Auto)
- (注) この機能をサポートするCPUを取り付けている場合のみ、この項目が表示されます。Intel® CPU の固有機能の詳細については、Intel の Web サイトにアクセスしてください。

☐ Turbo Power Limit (Watts)

CPU Turboモードの電力制限を設定できます。CPU の消費電力がこれらの指定された電力制限を超えると、CPU は電力を削減するためにコア周波数を自動的に低下します。Autoでは、CPU 仕様に従って電力制限を設定します。(既定値: Auto)

☐ Core Current Limit (Amps)

CPU Turbo モードの電流制限を設定できます。CPU の電流がこれらの指定された電流制限を超えると、CPU は電流を削減するためにコア周波数を自動的に低下します。Autoでは、CPU 仕様に従って電力制限を設定します。(既定値: Auto)

使用するCPUコアを選択します。(選択可能なCPUコア数については、CPUによって異なります。) **Auto** では、BIOS がこの設定を自動的に設定します。(既定値: Auto)

→ Hyper-Threading Technology (注)

ごの機能をサポートする Intel® CPU 使用時にマルチスレッディングテクノロジーの有効/無効を切り替えます。この機能は、マルチプロセッサモードをサポートするオペレーティングシステムでのみ動作します。 Auto では、BIOS がこの設定を自動的に設定します。 (既定値:Auto)

システム一時停止状態時の省電力機能で、Intel® CPU Enhanced Halt (C1E) 機能の有効/無効を切り替えます。有効になっているとき、CPU コア周波数と電圧は下げられ、システムの停止状態の間、消費電力を抑えます。Auto では、BIOS がこの設定を自動的に設定します。(既定値: Auto)

○ C3 State Support (注)

システムが停止状態になっているとき、CPUがC3モードに入るかどうかを決定します。有効になっているとき、CPUコア周波数と電圧は下げられ、システムの停止状態の間、消費電力を抑えます。C3状態は、C1より省電力状態がはるかに強化されています。Autoでは、BIOSがこの設定を自動的に設定します。(既定値:Auto)

システムが停止状態になっているとき、CPU が C6/C7 モードに入るかどうかを決定します。 有効になっているとき、CPU コア周波数と電圧は下げられ、システムの停止状態の間、消費 電力を抑えます。C6/C7 状態は、C3 より省電力状態がはるかに強化されています。Auto では、BIOS がこの設定を自動的に設定します。(既定値: Auto)

○ CPU Thermal Monitor (注)

CPU 過熱保護機能である Intel® Thermal Monitor 機能の有効 / 無効を切り替えます。有効になっているとき、CPUが過熱すると、CPU コア周波数と電圧が下がります。 Auto では、BIOS がこの設定を自動的に設定します。(既定値: Auto)

○ CPU EIST Function (注)

Enhanced Intel® Speed Step 技術 (EIST) の有効/無効を切り替えます。CPU負荷によっては、Intel® EIST技術はCPU電圧とコア周波数をダイナミックかつ効率的に下げ、消費電力と熱発生量を低下させます。Autoでは、BIOSがこの設定を自動的に設定できます。(既定値:Auto)

(注) この機能をサポートするCPUを取り付けている場合のみ、この項目が表示されます。Intel® CPU の固有機能の詳細については、Intel の Web サイトにアクセスしてください。

有効にすると、BIOSがXMPメモリモジュールのSPDデータを読み取り、メモリのパフォーマンスを強化することが可能です。

▶ Disabled この機能を無効にします。(既定値)▶ Profile1 プロファイル 1 設定を使用します。


▶ Profile 2 (注) プロファイル 2 設定を使用します。

System Memory Multiplier

システム メモリマルチプライヤの設定が可能になります。**Auto** は、メモリの SPD データに 従ってメモリマルチプライヤを設定します。(既定値:Auto)

最初のメモリ周波数値は使用されるメモリの標準の動作周波数で、2番目の値は System Memory Multiplier 設定に従って自動的に調整されるメモリ周波数です。

▶ Advanced Memory Settings (メモリの詳細設定)

- Extreme Memory Profile (X.M.P.)^(注)、System Memory Multiplier、Memory Frequency(MHz)
 上の項目の設定は Advanced Frequency Settings メニューの同じ項目と同期しています。
- Memory Boot Mode

メモリチェックと動作方法の設定を行います。

◆ Auto BIOSでこの設定を自動的に構成します。(既定値)

▶ Enable Fast Boot 高速メモリブート可能なメモリ検出を行います。

▶ Disable Fast Boot ブート時にメモリ1本1本の順にチェックを行います。

3種類のメモリー パフォーマンスの設定を行います:Normal (基本性能)、Enhanced Stability、Enhanced Performance。(既定値:Normal)

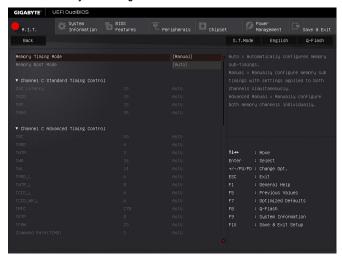
(注) この機能をサポートするCPUとメモリモジュールを取り付けているときのみ、この項目が表示されます。

→ Memory Timing Mode

Manual と Advanced Manual では、Channel Interleaving、Rank Interleaving、および以下のメモリのタイミング設定を構成できます。オプション:Auto (既定値)、Manual、Advanced Manual。

→ Profile DDR Voltage

Non-XMPメモリーモジュール、またはExtreme Memory Profile (X.M.P.) を使用する場合は Disabledに設定され、その値は、メモリの仕様に応じて表示されます。 Extreme Memory Profile (X.M.P.) が Profile 1 または Profile 2 に設定されているとき、この項目はXMPメモリのSPDデータに基づく値を表示します。

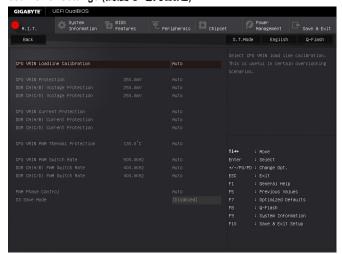

Channel Interleaving

メモリチャンネルのインターリービングの有効/無効を切り替えます。Enabled (有効) 設定にすると、システムはメモリのさまざまなチャンネルに同時にアクセスしてメモリパフォーマンスと安定性の向上を図ります。Autoでは、BIOSがこの設定を自動的に設定します。(既定値:Auto)

□ Rank Interleaving

メモリランクのインターリービングの有効/無効を切り替えます。Enabled (有効) 設定すると、システムはメモリのさまざまなランクに同時にアクセスしてメモリパフォーマンスと安定性の向上を図ります。Auto では、BIOS がこの設定を自動的に設定します。(既定値:Auto)

▶ Channel A/B/C/D Memory Sub Timings



このサブメニューでは、メモリの各チャンネルのメモリタイミング設定を行います。タイミング設定の各画面は、Memory Timing Mode が Manual または Advanced Manual の場合のみ設定可能です。注:メモリのタイミングを変更後、システムが不安定になったり起動できなくなることがあります。その場合、最適化された初期設定を読み込むかまたは CMOS 値を消去することでリセットしてみてください。

▶ Advanced Voltage Settings (詳細な電圧設定)

▶ Advanced Power Settings (高度な電力設定)

☐ CPU VRIN Loadline Calibration

CPU VRINのロードラインキャリブレーションのレベルを設定できます。レベルは次のとおりです (高い方から低い方へ)。Extreme、Turbo、High、Medium、Low、または Standard。より高いレベルを選択すると、高負荷状態でのBIOSの設定内容とVcoreがより一致します。Auto は、BIOS にこの設定を自動的に設定させ、Intel®の仕様に従って電圧を設定します。(既定値: Auto)

☐ CPU VRIN Protection

CPU の VRIN 電圧に対する過電流保護レベルを設定できるようになります。調整可能な範囲は 150.0mV~400.0mV の間です。 **Auto** では、BIOS がこの設定を自動的に設定します。(既定値: Auto)

→ DDR CH(A/B) Voltage Protection

過電圧保護のために、チャンネルAとチャンネルBのメモリ電圧に電圧限度を設定できます。調整可能な範囲は 150.0mV~325.0mV の間です。 Auto では、BIOS がこの設定を自動的に設定します。(既定値: Auto)

→ DDR CH(C/D) Voltage Protection

過電圧保護のために、チャンネルCとチャンネルDのメモリ電圧に電圧限度を設定できます。調整可能な範囲は 150.0mV~325.0mV の間です。 Auto では、BIOS がこの設定を自動的に設定します。(既定値: Auto)

☐ CPU VRIN Current Protection

CPU の VRIN 電圧に対する過電流保護レベルを設定できるようになります。

▶ Auto BIOSでこの設定を自動的に構成します。(既定値)

▶ Standard~Extreme Standard、Low、Medium、High、Turbo、またはExtreme を選択します。これらはCPU VRIN 電圧の異なる過電流保護レベルを表しています。

DDR CH(A/B) Current Protection

チャンネル A およびチャンネル B メモリ電圧に対する過電流保護レベルを設定できます。

▶ Auto BIOSでこの設定を自動的に構成します。(既定値)

▶ Standard~Extreme Standard、Low、Medium、High、Turbo、またはExtreme を選択します。これらは、メモリ電圧に対する各レベルの過電流保護を表します。

DDR CH(C/D) Current Protection

チャンネルCおよびチャンネルDメモリ電圧に対する過電流保護レベルを設定できます。

▶ Auto BIOSでこの設定を自動的に構成します。(既定値)

▶ Standard~Extreme Standard、Low、Medium、High、Turbo、またはExtreme を選択します。これらは、メモリ電圧に対する各レベルの過電流保護を表します。

□ CPU VRIN PWM Thermal Protection

CPU VRIN エリアに対する PWM 熱保護のしきい値を設定できます。調整可能範囲は 120°C ~ 130°Cです。(既定値: Auto)

CPU VRIN PWM Switch Rate

CPU VRIN の PWM 周波数を設定できます。調整可能な範囲は 400.0KHz~600.0KHz の間です。(既定値:Auto)

DDR CH(A/B) PWM Switch Rate

チャンネル A とチャンネル B のメモリに PWM 周波数を設定できます。調整可能な範囲は 300.0KHz~500.0KHz の間です。(既定値:Auto)

DDR CH(C/D) PWM Switch Rate

チャンネル C とチャンネル D のメモリに PWM 周波数を設定できます。 調整可能な範囲は 300.0KHz~500.0KHz の間です。 (既定値: Auto)

PWM Phase Control

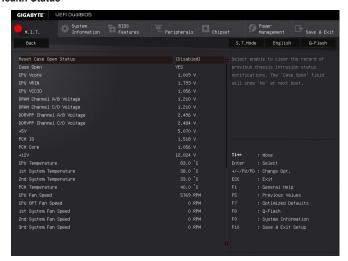
CPU の負荷によって PWM フェーズを自動的に変更できるようになります。省電力レベル(低い方から高い方へ): eXm Perf (極度のパフォーマンス)、High Perf (高パフォーマンス)、Perf (パフォーマンス)、Balanced(バランス)、Mid PWR (標準電力)、および Lite PWR (低電力)。 **Auto** では、BIOS がこの設定を自動的に設定します。(既定値: Auto)

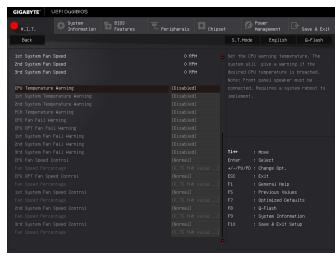
→ S3 Save Mode

システムが S3 状態の場合、メモリ電圧を省電力レベルに低下させるかどうかを決定します。(既定値:Disabled)

▶ CPU Core Voltage Control (CPU コア電圧制御)

このセクションでは、CPU 電圧制御オプションについて記載します。


▶ Chipset Voltage Control (チップセットの電圧制御)


このセクションでは、チップセット電圧制御オプションについて記載します。

▶ DRAM Voltage Control (DRAM 電圧制御)

このセクションでは、メモリ電圧制御オプションについて記載します。

PC Health Status

▶ Disabled 過去のケース開閉状態の記録を保持または消去します。(既定値)

Enabled 過去のケース開閉状態の記録をクリアします。次回起動時、Case Open フィールドに「No」と表示されます。

マザーボードの CI ヘッダに接続されたケース開閉の検出状態を表示します。システムケースのカバーが外れている場合、このフィールドが「Yes」になります。そうでない場合は「No」になります。ケースの開閉状態の記録を消去したい場合は、Reset Case Open Status を Enabled にして、設定を CMOS に保存してからシステムを再起動します。

- CPU Vcore/CPU VRIN/CPU VCCIO/DRAM Channel A/B Voltage/DRAM Channel C/D Voltage/DDRVPP Channel A/B Voltage/DDRVPP Channel C/D Voltage/+5V/PCH IO/PCH Core/+12V 現在のシステム電圧を表示します。
- CPU/PCH Temperature

現在の CPU またはチップセットの温度を表示します。

- CPU/System (SYS_FAN1~SYS_FAN2)/PCH Temperature Warning CPU/システム/チップセット温度警告のしきい値を設定します。温度がしきい値を超えた場合、BIOS が警告音を発します。オプション: Disabled (既定値)、60°C/140°F、70°C/158°F、80°C/176°F、90°C/194°F。
- ▽ CPU/CPU OPT/System Fan Fail Warning
 ファンが接続されているか失敗したかで、システムは警告を出します。警告があった場合、ファンの状態またはファンの接続を確認してください。(既定値: Disabled)

ファン速度コントロール機能を有効にして、ファン速度を調整します。

Normal CPU温度に従って異なる速度でファンを動作させることができます。シス

テム要件に基づいて、System Information Viewerでファン速度を調整するこ

とができます。(既定値)

- ▶ Silent ファンを低速度で作動します。
- **▶** Manual Fan Speed Percentage 項目の下で、ファンの速度をコントロールします。
- ▶ Full Speed ファンを全速で作動します。

→ Fan Speed Percentage

ファン速度をコントロールします。 **CPU Fan Speed Control** が **Manual** に設定されている場合のみ、この項目を構成できます。オプション: 0.75 PWM value ${}^{\rho}$ C ~ 2.50 PWM value ${}^{\rho}$ C.

○ CPU OPT Fan Speed Control (CPU OPT コネクター)

ファン速度コントロール機能を有効にして、ファン速度を調整します。

▶ Normal CPU温度に従って異なる速度でファンを動作させることができます。シス

テム要件に基づいて、System Information Viewerでファン速度を調整するこ

とができます。(既定値)

▶ Silent ファンを低速度で作動します。

Manual Fan Speed Percentage 項目の下で、ファンの速度をコントロールします。

▶ Full Speed ファンを全速で作動します。

→ Fan Speed Percentage

ファン速度をコントロールします。 **CPU OPT Fan Speed Control** が **Manual** に設定されている場合のみ、この項目を構成できます。オプション: 0.75 PWM value ${}^{\rho}$ C ~ 2.50 PWM value ${}^{\rho}$ C.

ファン速度コントロール機能を有効にして、ファン速度を調整します。

▶ Normal システム温度に従って異なる速度でファンを動作させることができます。

システム要件に基づいて、System Information Viewerでファン速度を調整す

ることができます。(既定値)

▶ Silent ファンを低速度で作動します。

→ Manual Fan Speed Percentage 項目の下で、ファンの速度をコントロールします。

▶ Full Speed ファンを全速で作動します。

ファン速度をコントロールします。1st System Fan Speed Control が Manual に設定されている場合のみ、この項目を構成できます。オプション:0.75 PWM value PC ~ 2.50 PWM value PC。

2nd System Fan Speed Control (SYS_FAN2 コネクター)

ファン速度コントロール機能を有効にして、ファン速度を調整します。

▶Normal システム温度に従って異なる速度でファンを動作させることができます。

システム要件に基づいて、System Information Viewerでファン速度を調整す

ることができます。(既定値)

▶ Silent ファンを低速度で作動します。

▶ Manual Fan Speed Percentage 項目の下で、ファンの速度をコントロールします。

▶ Full Speed ファンを全速で作動します。

Fan Speed Percentage

ファン速度をコントロールします。 **2nd System Fan Speed Control** が **Manual** に設定されている場合のみ、この項目を構成できます。 オプション:0.75 PWM value ${}^{\rho}$ C ~ 2.50 PWM value ${}^{\rho}$ C。

▽ 3rd System Fan Speed Control (SYS_FAN3 コネクター)

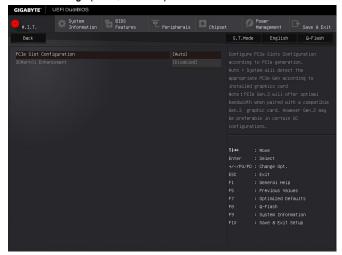
ファン速度コントロール機能を有効にして、ファン速度を調整します。

▶ Normal システム温度に従って異なる速度でファンを動作させることができます。

システム要件に基づいて、System Information Viewerでファン速度を調整す

ることができます。(既定値)

▶ Silent ファンを低速度で作動します。


▶ Manual Fan Speed Percentage 項目の下で、ファンの速度をコントロールします。

▶ Full Speed ファンを全速で作動します。

Fan Speed Percentage

ファン速度をコントロールします。 **3rd System Fan Speed Control** が **Manual** に設定されている場合のみ、この項目を構成できます。オプション: 0.75 PWM value ${}^{\rho}$ C ~ 2.50 PWM value ${}^{\rho}$ C。

▶ Miscellaneous Settings (その他の設定)

PCle Slot Configuration

PCI Expressスロットの動作モードをGen 1、Gen 2、またはGen 3に設定できます。実際の動作モードは、各スロットのハードウェア仕様によって異なります。Auto では、BIOS がこの設定を自動的に設定します。(既定値: Auto)

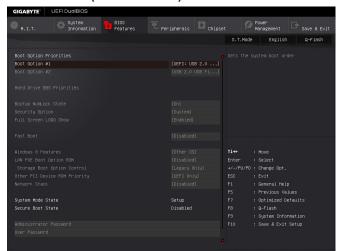
→ 3DMark01 Enhancement

一部の従来のベンチマーク性能を向上させることができます。(既定値: Disabled)

2-4 System Information (システムの情報)

このセクションでは、マザーボード モデルおよび BIOS バージョンの情報を表示します。また、BIOS が使用する既定の言語を選択して手動でシステム時計を設定することもできます。

⇒ System LanguageBIOS が使用する既定の言語を選択します。


と <Page Down> キーで設定します。

- BIOS か使用する既定の言語を選択します。 **System Date**
- 切り替え、<Page Up> キーと <Page Down> キーで設定します。 **System Time**システムの時計を設定します。時計の形式は時、分、および秒です。例えば、1 p.m. は 13:00:00 です。<Enter> で Hour (時間)、Minute (分)、および Second (秒) フィールドを切り替え、<Page Up> キー

システムの日付を設定します。<Enter> で Month (月)、Date (日)、および Year (年) フィールドを

使用するパスワード保護のタイプによって現在のアクセスレベルを表示します。(パスワードが設定されていない場合、既定では Administrator (管理者) として表示されます。)管理者レベルでは、すべての BIOS 設定を変更することが可能です。ユーザーレベルでは、すべてではなく特定の BIOS 設定のみが変更できます。

2-5 BIOS Features (BIOS の機能)

→ Boot Option Priorities

使用可能なデバイスから全体の起動順序を指定します。起動デバイスリストでは、GPT 形式をサポートするリムーバブルストレージ デバイスの前に「UEFI:」が付きます。GPT パーティションをサポートするオペレーティングシステムから起動するには、前に「UEFI:」が付いたデバイスを選択します。

また、Windows 7 (64 ビット) など GPT パーティションをサポートするオペレーティングシステムをインストールする場合は、Windows 7 (64 ビット) インストールディスクを挿入し前に「UEFI:」が付いた光学ドライブを選択します。

- → Hard Drive/CD/DVD ROM Drive/Floppy Drive/Network Device BBS Priorities ハードドライブ、光ドライブ、フロッピーディスクドライブ、LAN 機能からの起動をサポート するデバイスなど特定のデバイス タイプの起動順序を指定します。このアイテムで <Enter>を押すと、接続された同タイプのデバイスを表すサブメニューに入ります。上記タイプのデバイスが1つでもインストールされていれば、この項目は表示されます。
- Bootup NumLock StatePOST後にキーボードの数字キーパッドにある NumLock 機能の有効 / 無効を切り替えます。(既定値: On)
- → Security Option

パスワードは、システムが起動時、または BIOS セットアップに入る際に指定します。このアイテムを設定した後、BIOS メインメニューの Administrator Password/User Password アイテムの下でパスワードを設定します。

- ▶ Setup パスワードは BIOS セットアッププログラムに入る際にのみ要求されます。 ▶ System パスワードは、システムを起動したり BIOS セットアッププログラムに入る際に要求されます。(既定値)
- Full Screen LOGO Show

システム起動時に、GIGABYTEロゴの表示設定をします。Disabled にすると、システム起動時に GIGABYTE ロゴをスキップします。(既定値:Enabled)

→ Fast Boot

Fast Boot を有効または無効にして OS の起動処理を短縮します。**Ultra Fast** では起動速度が 最速になります。(既定値:Disabled)

⇔ SATA Support

▶ All Sata Devices オペレーティングシステムおよび POST 中は、全 SATA デバイスは機能

します。(既定値)

▶ Last Boot HDD Only 以前の起動ドライブを除いて、すべての SATA デバイスは、OS 起動プロセスが完了するまで無効になります。

この項目は、Fast Boot が Enabled または Ultra Fast に設定された場合のみ設定可能です。

▽ VGA Support

起動するオペレーティングシステム種別が選択できます。

▶ Auto 従来のオプション ROM のみを有効にします。

▶ EFI Driver
EFI オプション ROM を有効にします。(既定値)

この項目は、Fast Boot が Enabled または Ultra Fast に設定された場合のみ設定可能です。

▶ Disabled OS ブートプロセスが完了するまで、全 USB デバイスは無効になって

います。

▶ Full Initial オペレーティングシステムおよび POST 中は、全 USB デバイスは機能

します。

▶ Partial Initial OS ブートプロセスが完了するまで、一部の USB デバイスは無効にな

っています。(既定値)

Fast Boot が Enabled に設定されている場合のみ、この項目を構成できます。Fast Boot が Ultra Fast に設定されている場合、この機能は無効になります。

PS2 Devices Support

▶ Disabled OS ブートプロセスが完了するまで、全 PS/2 デバイスは無効になって

います。

▶ Enabled オペレーティングシステムおよび POST 中は、全 PS/2 デバイスは機能

します。(既定値)

Fast Boot が Enabled に設定されている場合のみ、この項目を構成できます。Fast Boot が Ultra Fast に設定されている場合、この機能は無効になります。

○ NetWork Stack Driver Support

▶ Disabled ネットワークからのブートを無効にします。(既定値)

▶ Enabled ネットワークからのブートを有効にします。

この項目は、Fast Bootが Enabled または Ultra Fast に設定された場合のみ設定可能です。

Next Boot After AC Power Loss

Normal Boot
電源復帰後に通常起動をします。(既定値)

▶ Fast Boot
電源復帰後もFast Boot設定を維持します。

この項目は、Fast Boot が Enabled または Ultra Fast に設定された場合のみ設定可能です。

→ Windows 8 Features

インストールするオペレーティングシステムを選択することができます。(既定値:Other OS)

☐ CSM Support

従来のPC起動プロセスをサポートするには、UEFI CSM (Compatibility Software Module) を有効または無効にします。

▶ Enabled UEFI CSMを有効にします。(既定値)

▶ Disabled UEFI CSMを無効にし、UEFI BIOS起動プロセスのみをサポートします。 Windows 8 Features が Windows 8 または Windows 8 WHQL に設定されている場合のみ、この項目を設定できます。

☐ LAN PXE Boot Option ROM

LANコントローラーの従来のオプションROMを有効にすることができます。(既定値: Disabled) CSM Support が Enabledに設定されている場合のみ、この項目を設定できます。

Storage Boot Option Control

ストレージデバイスコントローラーについて、UEFIまたはレガシーのオプションROMを有効にするかを選択できます。

▶ Disabled オプションROMを無効にします。

▶ Legacy Only レガシーのオプションROMのみを有効にします。(既定値)

▶ UEFI Only
UEFIのオプションROMのみを有効にします。

CSM Support が Enabledに設定されている場合のみ、この項目を設定できます。

Other PCI Device ROM Priority

LAN、ストレージデバイス、およびグラフィックスROMなどを起動させる設定ができます。UEFI またはレガシーのオプションROMを有効にするかを選択できます。

▶ Legacy Only
レガシーのオプションROMのみを有効にします。

▶ UEFI Only UEFIのオプションROMのみを有効にします。(既定値)

CSM Support が Enabledに設定されている場合のみ、この項目を設定できます。

→ Network Stack

Windows Deployment ServicesサーバーのOSのインストールなど、GPT形式のOSをインストールするためのネットワーク起動の有効/無効を切り替えます。(既定値: Disabled)

☞ Ipv4 PXE Support

IPv4 PXEサポートの有効/無効を切り替えます。Network Stack が有効になっている場合のみ、この項目を構成できます。

□ Ipv6 PXE Support

IPv6 PXEサポートの有効/無効を切り替えます。Network Stack が有効になっている場合のみ、この項目を構成できます。

Administrator Password

管理者パスワードの設定が可能になります。この項目で <Enter> を押し、パスワードをタイプし、続いて <Enter> を押します。パスワードを確認するよう求められます。再度パスワードをタイプして、<Enter> を押します。システム起動時およびBIOS セットアップに入るときは、管理者パスワード (またはユーザー パスワード) を入力する必要があります。ユーザー パスワードと異なり、管理者パスワードではすべての BIOS 設定を変更することが可能です。


→ User Password

ユーザーパスワードの設定が可能になります。この項目で <Enter> を押し、パスワードをタイプし、続いて <Enter> を押します。パスワードを確認するよう求められます。再度パスワードをタイプして、<Enter> を押します。システム起動時およびBIOS セットアップに入るときは、管理者パスワード(またはユーザーパスワード)を入力する必要があります。しかし、ユーザーパスワードでは、変更できるのはすべてではなく特定の BIOS 設定のみです。

パスワードをキャンセルするには、パスワード項目で <Enter> を押します。パスワードを求められたら、まず正しいパスワードを入力します。新しいパスワードの入力を求められたら、パスワードに何も入力しないで <Enter> を押します。確認を求められたら、再度 <Enter> を押します。

注:ユーザーパスワードを設定する前に、最初に管理者パスワードを設定してください。

2-6 Peripherals (周辺機器)

☐ Initial Display Output

PCI Express グラフィックス カードから、モニタ ディスプレイの最初の開始を指定します。

▶ PCle 1 Slot 最初のディスプレイとして、PCIE_1 スロットにあるグラフィックカードを設

定します。(既定値)

▶ PCIe 2 Slot 最初のディスプレイとして、PCIE_2 スロットにあるグラフィックカードを設定します。

▶ PCIe 3 Slot 最初のディスプレイとして、PCIE_3 スロットにあるグラフィックカードを設定します。

▶ PCIe 4 Slot 最初のディスプレイとして、PCIE_4 スロットにあるグラフィックカードを設定します。

オンボードオーディオLED機能の有効/無効を切り替えます。

▶ Off この機能を無効にします。

▶ Still Mode LED は常時点灯します。(既定値)

▶ Beat Mode 音楽のリズムに合わせて LED の明るさが変化します。▶ Pulse Mode LED の明るさは息のようにゆっくりと滑らかに変化します。

☐ LED Hue

オーディオLEDの色を変更することができます。(既定値:黄)

☐ Legacy USB Support

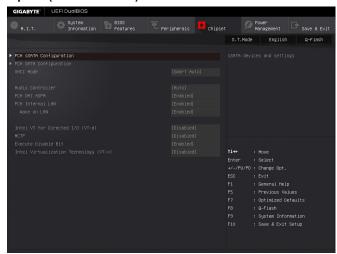
USB キーボード/マウスを MS-DOS で使用できるようにします。(既定値: Enabled)

→ XHCl Hand-off

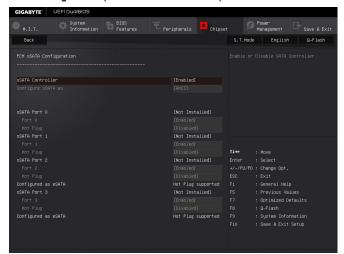
XHCIハンドオフに対応していないOSでも、XHCIハンドオフ機能を有効/無効に設定できます。(既定値:Enabled)

☐ EHCI Hand-off

EHCIハンドオフに対応していないOSでも、EHCIハンドオフ機能を有効化/無効化に設定できます。(既定値:Disabled)


USB Storage Devices

接続されたUSB大容量デバイスのリストを表示します。この項目は、USBストレージデバイスがインストールされた場合のみ表示されます。


Intel(R) Ethernet Connection

このサブメニューは、LAN 構成と関連する構成オプションの情報を提供します。

2-7 Chipset (チップセット)

▶ PCH sSATA Configuration (sSATA3 0~3 コネクター)

→ sSATA Controller

sSATA3 $0\sim3$ のコネクターを制御する統合された SATA コントローラを有効または無効にします。(既定値: Enabled)

Configure sSATA as

SATA コントローラを AHCI モードに設定するかどうかを決定します。

▶IDE SATAコントローラをIDEモードに構成します。

▶ AHCI SATA コントローラーを AHCI モードに構成します。 Advanced Host Controller Interface (AHCI) は、ストレージドライバが NCQ (ネイティヴ・コマンド・キューイング) およびホットプラグなどの高度なシリアルATA機能を有効にできるインターフェイス仕様です。(既定値)

- ⇒ sSATA Port0/1/2/3
 - 各SATAポートを有効または無効にします。(既定値: Enabled)
- Hot plug

各SATAポートのホットプラグ機能を有効または無効にします。(既定値:Disabled)

▶ PCH SATA Configuration (SATA3 0~5 コネクター)

→ SATA Controller

SATA3 0~5 のコネクターを制御する統合された SATA コントローラを有効または無効にします。(既定値:Enabled)

Configure SATA as

SATAコントローラー用のRAIDの有効/無効を切り替えるか、SATAコントローラーをAHCIモードに構成します。

- ▶IDE SATA コントローラーを IDE モードに構成します。
- ▶ RAID SATA コントローラーに対してRAIDモードを有効にします。
- ▶ AHCI SATA コントローラーを AHCI モードに構成します。 Advanced Host Controller Interface (AHCI) は、ストレージドライバが NCQ (ネイティヴ・コマンド・キューイング) およびホットプラグなどの高度なシリアルATA機能を有効にで

きるインターフェイス仕様です。(既定値)

SATA Mode options

このサブメニューは、SATA 設定に関連する情報を提供します。

→ SATA Port 0/1/2/3/4/5

各SATAポートを有効または無効にします。(既定値: Enabled)

Hot plug

各SATAポートのホットプラグ機能を有効または無効にします。(既定値: Disabled)

OSのxHClコントローラーのオペレーティングモードを決定できます。

▶ Smart Auto BIOSがブート前環境でxHCIコントローラーをサポートしている場合のみ このモードが使用可能です。このモードは Auto に類似していますが、ブ ート前環境で (非 G3 ブートの場合) 前回ブート時に使用した設定に従っ

て xHCI または EHCI にポートをルーティングする機能を追加します。OSの 起動前に USB 3.0 デバイスの使用が可能になります。前回のブートでポー トを EHCI にルーティングした場合、xHCI コントローラーの有効化とリルー ティングは、Autoのステップに従って行います。注:BIOSがxHCIの起動前サ

ポートに対応している場合に推奨するモードです。(既定値)

BIOSは、共有ポートをEHCIコントローラーにルーティングします。続い て、ACPIプロトコルを用いてxHCIコントローラーの有効化と共有ポートの リルーティングを可能にするオプションを提供します。注:BIOSがxHCIの ブート前サポートに対応していない場合に推奨するモードです。

結果として、すべての共有ポートがBIOSの起動プロセス中にxHCIコントロ ▶ Enabled

-ラーにルーティングされます。BIOSがxHClコントローラーの起動前サポ ートに対応していない場合、最初は共有ポートをEHCIコントローラーにル ーティングし、その後OSブートの前にポートをxHCIコントローラーにルー ティングする必要があります。注:このモードではOSがxHCIコントローラ -にサポートしている必要があります。OSがサポートしていない場合、す

べての共有ポートが動作しません。 Disabled

USB 3.0ポートはEHCIコントローラーにルーティングし、xHCIコントローラー をオフにします。すべてのUSB 3.0デバイスは、xHCIソフトウェアのサポート

が使用可能かに関係なく高速デバイスとして機能します。

OS の起動前に USB 3.0 ポートを xHCl または EHCl コントローラにルーテ ▶ Manual ィングするかを決定します。また、各 USB 3.0/2.0 ポートを xHCl または EHCl に手動ルーティングするオプションが設けられています。

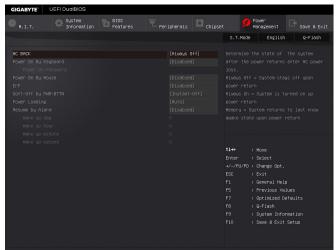
Audio Controller

➤ Auto

オンボードオーディオ機能の有効/無効を切り替えます。(既定値:Auto)

→ PCH DMI ASPM

チップセット DMI リンクに対する ASPM モードを設定することができます。(既定値: Enabled)


- ◇ PCH Internal LAN (Intel® GbE LAN チップ) オンボードLAN機能の有効/無効を切り替えます。(既定値: Enabled) オンボードLANを使用する代わりに、サードパーティ製増設用ネットワークカードをインス トールする場合、この項目をDisabledに設定します。
- 呼び起こしLAN機能の有効/無効を切り替えます。(既定値: Enabled)
- ✓ Intel VT for Directed I/O (VT-d) (注) Directed I/O 用 Intel® Virtualization テクノロジーの有効/無効を切り替えます。(既定値: Disabled)
- → MCTP LANチップのManagement Component Transport Protocol (MCTP)の有効/無効の設定ができます。 (既定值:Disabled)
- ○ Execute Disable Bit (注)

Intel® Execute Disable Bit (Intel®メモリ保護) 機能の有効/無効を切り替えます。この機能は、コン ピュータの保護を拡張して、サポートするソフトウェアおよびシステムと一緒に使用すること でウィルスの放出および悪意のあるバッファのオーバーフロー攻撃を減少させることがで きます。(既定値:Enabled)

✓ Intel Virtualization Technology (VT-x) (注) Intel® Virtualization テクノロジーの有効/無効を切り替えます。Intel®仮想化技術によって強化さ れたプラットフォームは独立したパーティションで複数のオペレーティングシステムとアプ リケーションを実行できます。仮想化技術では、1つのコンピュータシステムが複数の仮想 化システムとして機能できます。(既定値:Disabled)

(注) この機能をサポートするCPUを取り付けている場合のみ、この項目が表示されます。Intel® CPU の固有機能の詳細については、Intel の Web サイトにアクセスしてください。

2-8 Power Management (電力管理)

→ AC BACK

AC 電源損失から電源復帰した後のシステム状態を決定します。

▶ Always Off AC 電源が戻ってもシステムの電源はオフのままです。(既定値)

▶ Always On AC 電源が戻るとシステムの電源はオンになります。

▶ Memory AC 電源が戻ると、システムは既知の最後の稼働状態に戻ります。

Power On By Keyboard

PS/2 キーボードのからの入力によりシステムの電源をオンにすることが可能です。 注: この機能を使用するには、+5VSBリードで1A以上を提供するATX電源装置が必要です。

▶ Disabled この機能を無効にします。(既定値)

▶ Any Key キーボードのいずれかのキーを押してシステムの電源をオンにします。

▶ Keyboard 98 Windows 98 キーボードの POWER ボタンを押してシステムの電源をオンに

します。

▶ Password 1~5 文字でシステムをオンスするためのパスワードを設定します。

Power On Password

Power On By Keyboard が Password に設定されているとき、パスワードを設定します。 このアイテムで <Enter> を押して 5 文字以内でパスワードを設定し、<Enter> を押して受け入れます。システムをオンにするには、パスワードを入力し <Enter> を押します。 注:パスワードをキャンセルするには、このアイテムで <Enter> を押します。パスワードを求められたとき、パスワードを入力せずに <Enter> を再び押すとパスワード設定が消去されます。

Power On By Mouse

PS/2 マウスからの入力により、システムをオンにします。

注:この機能を使用するには、+5VSBリードで1A以上を提供するATX電源装置が必要です。

▶ Disabled この機能を無効にします。(既定値)

Move マウスを移動させてシステムの電源をオンにします。

▶ Double Click マウスの左ボタンをダブルクリックすると、システムのパワーがオンにな

ります。

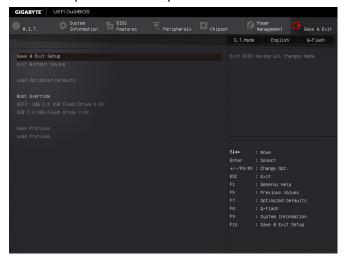
S5 (シャットダウン) 状態でシステムの消費電力を最小に設定します。(既定値: Disabled) 注: このアイテムをEnabled に設定すると、次の機能が使用できなくなります。アラームタイマーによる復帰、PME イベントからの起動、マウスによる電源オン、キーボードによる電源オン、LAN からの起動。

→ Soft-Off by PWR-BTTN

電源ボタンで MS-DOS モードのコンピュータの電源をオフにする設定をします。

- ▶ Instant-Off 電源ボタンを押すと、システムの電源は即時にオフになります。(既定値)
- ▶ Delay 4 Sec. パワーボタンを 4 秒間押し続けると、システムはオフになります。 パワーボタンを押して 4 秒以内に放すと、システムはサスペンドモードに入ります。

→ Power Loading


ダミーローディング機能の有効/無効を切り替えます。パワーサプライユニットのローディングが低いためにシステムのシャットダウンや起動に失敗する場合は、有効に設定してください。**Auto**では、BIOS がこの設定を自動的に設定します。(既定値: Auto)

Resume by Alarm

任意の時間に、システムの電源をオンに設定します。(既定値: Disabled) 有効になっている場合、以下のように日時を設定してください:

- ▶ Wake up day:ある月の毎日または特定の日の特定の時間にシステムをオンにします。
- → Wake up hour/minute/second:自動的にシステムの電源がオンになる時間を設定します。 注:この機能を使う際は、オペレーティングシステムからの不適切なシャットダウンまたは AC 電源の取り外しはしないで下さい。そのような行為をした場合、設定が有効にならないことがあります。

2-9 Save & Exit (保存して終了)

☐ Save & Exit Setup

この項目で、Enter>を押し、Yesを選択します。これにより、CMOSの変更が保存され、BIOSセットアッププログラムを終了します。Noを選択するかまたは、Esc>を押すと、BIOSセットアップのメインメニューに戻ります。

Exit Without Saving

この項目で <Enter> を押し、Yesを選択します。これにより、CMOS に対して行われた BIOS セットアップへの変更を保存せずに、BIOS セットアップを終了します。Noを選択するかまたは <Esc> を押すと、BIOS セットアップのメインメニューに戻ります。

Load Optimized Defaults

この項目で <Enter> を押し、Yesを選択して BIOS の最適な初期設定を読み込みます。BIOS の初期設定は、システムが最適な状態で稼働する手助けをします。BIOS のアップデート後または CMOS 値の消去後には必ず最適な初期設定を読み込みます。

→ Boot Override

直ちに起動するデバイスを選択できます。選択したデバイスで <Enter> を押し、Yesを選択して確定します。システムは自動で再起動してそのデバイスから起動します。

→ Save Profiles

この機能により、現在の BIOS 設定をプロファイルに保存できるようになります。最大8つのプロファイルを作成し、セットアッププロファイル1~セットアッププロファイル8として保存することができます。<Enter>を押して終了します。またはSelect File in HDD/USB/FDDを選択してプロファイルをストレージデバイスに保存します。

Load Profiles

システムが不安定になり、BIOS の既定値設定をロードした場合、この機能を使用して前に作成されたプロファイルからBIOS 設定をロードすると、BIOS 設定をわざわざ設定しなおす煩わしさを避けることができます。まず読み込むプロファイルを選択し、<Enter>を押して完了します。Select File in HDD/USB/FDDを選択すると、お使いのストレージデバイスから以前作成したプロファイルを入力したり、正常動作していた最後のBIOS設定(最後の既知の良好レコード) に戻すなど、BIOSが自動的に作成したプロファイルを読み込むことができます。

- 62 -

BIOS セットアップ

第3章 SATA ハードドライブの設定

RAIDレベル

	RAID 0	RAID 1	RAID 5	RAID 10
ハードドライ ブの最小数	≥2	2	≥3	≥4
アレイ容量	ハードドライブの 数*最小ドライブ のサイズ		(ハードドライブの 数 -1) * 最小ドライ ブのサイズ	
耐故障性	いいえ	はい	はい	はい

SATA ハードドライブを設定するには、以下のステップに従ってください:

- A. コンピュータに SATA ハードドライブを取り付ける。
- B. BIOS セットアップで SATA コントローラーモードを設定します。
- C. RAID BIOS で RAID アレイを設定します。(注1)
- D. SATA RAID/AHCI ドライバとオペレーティングシステムをインストールします。(注2)

始める前に、以下のアイテムを用意してください:

- 少なくとも 2 台の SATA ハードドライブ (最適のパフォーマンスを発揮するために、同じモデルと容量のハードドライブを 2 台使用することをお勧めします)。RAIDを使用しない場合、準備するハードドライブは 1 台のみでご使用下さい。
- Windows セットアップディスク。
- マザーボードドライバディスク。
- USB メモリドライブ

3-1 SATA コントローラーを構成する

A. コンピュータに SATA ハードドライブをインストールする

SATA 信号ケーブルの一方の端を SATAハードドライブの背面に、もう一方の端をマザーボードの空いている SATA ポートに接続します。RAID セットを設定する場合は、必ず、ハードドライブを SATA3 0~5 ポートに接続してください。次に、電源装置からハードドライブに電源コネクターを接続します。

- (注1) SATA コントローラーで RAID を作成しない場合、このステップをスキップしてください。
- (注2) SATA コントローラーが AHCI または RAID モードに設定されているときに要求されます。

B. BIOS セットアップで SATA コントローラーモードを設定する

SATA コントローラーコードがシステム BIOS セットアップで正しく設定されていることを確認してください。

ステップ 1:

コンピュータの電源をオンにし、POST(パワーオンセルフテスト)中に <Delete> を押して BIOS セットアップに入ります。ChipsetIPCH SATA Configuration に移動します。SATA Controller が有効であることを確認してください。RAID を作成するには、Configure SATA as を RAID にします (図 1)。RAID を作成しない場合、この項目を IDE または AHCI に設定します。

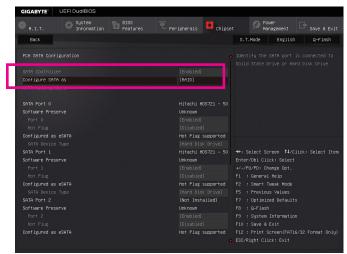


図 1

ステップ 2:

UEFI RAID を構成する場合は「C-1」のステップに従ってください。従来の RAID ROM に入るには、設定を保存して BIOS セットアップを終了します。詳細情報については「C-2」を参照してください。

◆ このセクションで説明した BIOS セットアップメニューは、マザーボードによって異なることがあります。表示される実際の BIOS セットアップオプションは、お使いのマザーボードおよび BIOS バージョンによって異なります。

C-1.UEFI RAID の設定

Windows 10/8.1 64bitのみUEFI RAID構成をサポートしています。

ステップ 1:

BIOS セットアップで、BIOS Features に移動し、Windows 8 Features を Windows 8 に、CSM Support を Disabled に設定します(図2)。変更を保存し、BIOS セットアップを終了します。

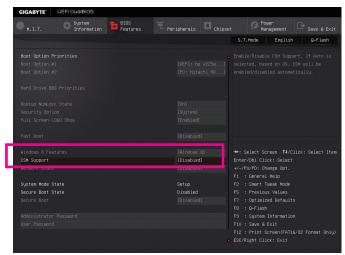


図 2

ステップ 2:

システムの再起動後、再度 BIOS セットアップに入ります。続いて Peripherals\Intel(R) Rapid Storage Technology サブメニューに入ります (図 3)。

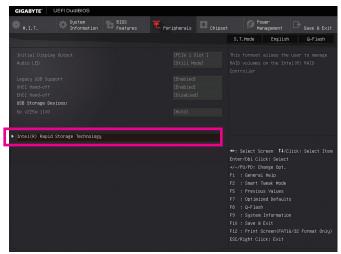


図3

ステップ 3:

Intel(R) Rapid Storage Technology メニューにおいて、Create RAID Volume で <Enter> を押して Create RAID Volume 画面に入ります。Name の項目で 1~16 文字 (文字に特殊文字を含めることはできません) のボリューム名を入力し、<Enter> を押します。次に、RAID レベルを選択します (図 4)。 サポートされる RAID レベルには RAID 0、RAID 1、RAID 10、と RAID 5 が含まれています (使用可能な選択は取り付けられているハードドライブの数によって異なります)。 次に、下矢印キーを用いて Select Disks に移動します。

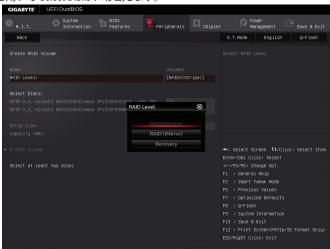


図 4

ステップ 4:

Select Disks の項目で、RAID アレイに含めるハードドライブを選択します。選択するハードドライブ上で <スペース> キーを押します (選択したハードドライブには "X" の印が付きます)。ストライブブロックサイズ (図 5) を設定します。ストライブブロックサイズは 4 KB~128 KB まで 設定できます。ストライプブロックサイズを選択したら、容積容量を設定します。

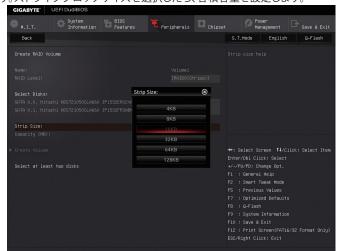


図 5

ステップ 5:

容量を設定後、Create Volume に移動し、<Enter> を押して開始します。(図 6)

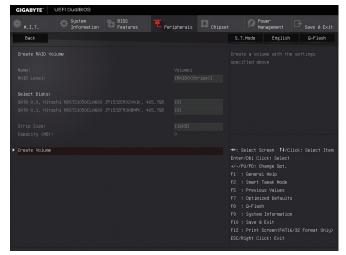


図 6

完了すると、Intel(R) Rapid Storage Technology 画面に戻ります。RAID Volumes に新しい RAID ボリュームが表示されます。詳細情報を見るには、ボリューム上で <Enter> を押して RAID レベルの情報、ストライプブロックサイズ、アレイ名、アレイ容量などを確認します (図 7)。

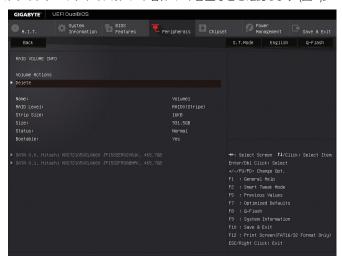


図 7

RAIDボリュームを削除する

RAID アレイを削除するには、Intel(R) Rapid Storage Technology 画面において削除するボリューム上で <Enter> を押します。RAID VOLUME INFO 画面に入ったら、Delete で <Enter> を押して Delete 画面に入ります。Yes で <Enter> を押します (図 8)。

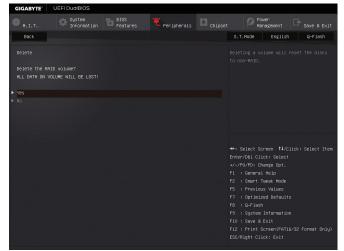


図 8

C-2.Legacy RAID ROMを設定する

Intel® legacy RAID BIOS セットアップユーティリティに入って、RAID アレイを設定します。非 RAID 構成の場合、このステップをスキップし、Windows オペレーティングシステムのインストールに進んでください。

ステップ 1:

POST メモリテストが開始された後でオペレーティングシステムがブートを開始する前に、「Press <Ctrl-I> to enter Configuration Utility」(図 9)。 <Ctrl> + <|>を押して RAID 設定ユーティリティに入ります。

図 9

ステップ 2:

<Ctrl> + <l> を押すと、MAIN MENU スクリーンが表示されます (図 10)。

RAIDボリュームを作成する

RAID アレイを作成する場合、MAIN MENU で Create RAID Volume を選択し <Enter> を押します。

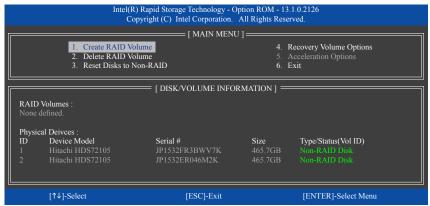


図 10

ステップ 3:

CREATE VOLUME MENU スクリーンに入った後、Name の項目で 1~16 文字 (文字に特殊文字を含めることはできません) のボリューム名を入力し、<Enter> を押します。次に、RAID レベルを選択します (図 11)。 サポートされる RAID レベルには RAID 0、RAID 1、RAID 10、と RAID 5 が含まれています (使用可能な選択は取り付けられているハードドライブの数によって異なります)。 <Enter>を押して続行します。

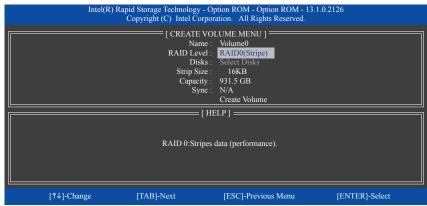


図 11

ステップ 4:

Disks の項目で、RAID アレイに含めるハードドライブを選択します。取り付けたドライブが 2台 のみの場合、ドライブはアレイに自動的に割り当てられます。必要に応じて、ストライブブロックサイズ (図 12) を設定します。ストライブブロックサイズは 4 KB~128 KB まで 設定できます。ストライプブロックサイズを選択してから、<Enter> を押します。

図 12

ステップ 5:

アレイの容量を入力し、<Enter>を押します。最後に、Create Volume で <Enter>を押し、RAID アレイの作成を開始します。ボリュームを作成するかどうかの確認を求められたら、<Y> を押して確認するか <N> を押してキャンセルします (図 13)。

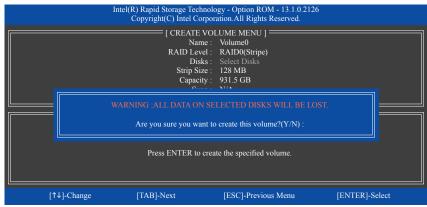


図 13

完了したら、DISK/VOLUME INFORMATION セクションに、RAID レベル、ストライブブロックサイズ、アレイ名、およびアレイ容量などを含め、RAID アレイに関する詳細な情報が表示されます (図 14)。

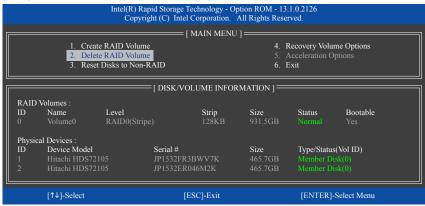


図 14

RAID BIOS ユーティリティを終了するには、<Esc> を押すか MAIN MENU で6. Exit を選択します。

これで、SATA RAID/AHCI ドライバディスケットを作成し、SATA RAID/ACHI ドライバとオペレーティングシステムをインストールできるようになりました。

リカバリボリュームオプション

Intel® Rapid Recover Technologyでは指定されたリカバリドライブを使用してデータとシステム操作を容易に復元できるようにすることで、データを保護しています。Rapid Recovery Technologyでは、RAID 1 機能を採用しているため、マスタードライブからリカバリドライブにデータをコピーすることができます。必要に応じて、リカバリドライブのデータをマスタドライブに復元することができます。

始める前に:

- リカバリドライブは、マスタドライブより大きな容量にする必要があります。
- リカバリボリュームは、2 台のハードドライブがある場合のみ作成できます。リカバリボリュームと RAID アレイはシステムに同時に共存することはできません。つまり、リカバリボリュームがすでに作成されている場合、RAID アレイを作成できません。
- デフォルトで、オペレーティングシステムにはマスタドライブのみが表示されます。リカバリドライブは非表示にされています。


ステップ 1:

MAIN MENU で Create RAID Volume を選択し、<Enter>を押します(図 15)。

ステップ 2:

ボリューム名を入力した後、RAID Level アイテムの下で Recovery を選択し<Enter>を押します(図 16)。

ステップ 3:

Select Disks アイテムの下で、<Enter>を押します。SELECT DISKS ボックスで、マスタドライブに対して使用するハードドライブには<Tab>を押し、リカバリドライブに対して使用するハードドライブには <Space> を押します。(リカバリドライブの容量がマスタドライブの容量より大きいことを確認してください) <Enter>を押して確認します (図 17)。

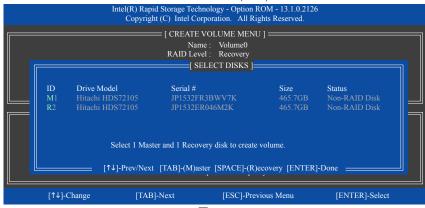


図 17

ステップ 4:

Sync の項目を、Continuous または On Request を選択します (図 18)。 Continuous に設定されて いるとき、両方のハードドライブがシステムに取り付けられていれば、マスタドライブのデータ を変更するとその変更はリカバリドライブに自動的かつ連続してコピーされます。 On Request では、オペレーティングシステムの Intel® Rapid Storage Technology ユーティリティを使用してマス タドライブからリカバリドライブに手動でデータを更新できます。 On Request では、マスタドライブを以前の状態に復元することもできます。

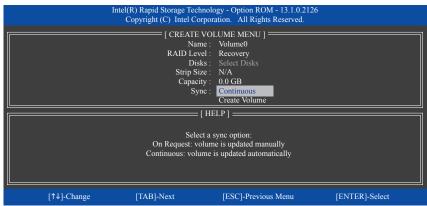


図 18

ステップ 5:

最後に、Create Volume の項目で <Enter> を押してリカバリボリュームの作成を開始し、オンスクリーンの指示に従って完了します。

Delete RAID Volume

RAID アレイを削除するには、MAIN MENU で Delete RAID Volume を選択し、<Enter> を押します。 DELETE VOLUME MENU セクションで、上または下矢印キーを使用して削除するアレイを選択し、<Delete> を押します。選択を確認するように求められたら (図 19)、<Y> を押して確認するか <N> を押して中断します。

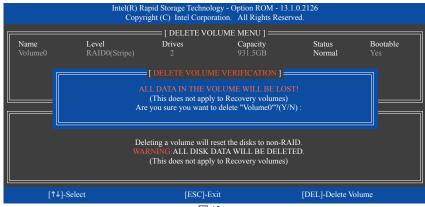


図 19

Acceleration Options

このオプションにより、Intel® IRSTユーティリティを使用して作成された高速化ドライブ / ボリューム (図 20) の状態を表示できるようになります。アプリケーションエラーまたはオペレーティングシステムの問題によりIntel® IRSTユーティリティを動作させることができなくなった場合は、RAID ROMユーティリティにあるこのオプションを使用して、高速化をなくすかまたは手動で同期を有効にする必要があります (最大化モードのみ)。

ステップ:

Acceleration Options で MAIN MENU を選択し、<Enter>を押します。

高速化をなくすために、高速化するドライブ/ボリュームを選択してから <R> を押し、<Y> で確定します。

キャッシュデバイスと高速化ドライブ/ボリュームのデータを同期するには、<S> を押してから <Y> を押して確定します。

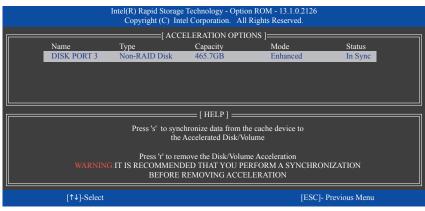


図 20

3-2 SATA RAID/AHCI ドライバーとオペレーティングシステムの インストール

BIOS 設定が正しく行われていれば、Windows 8.1/8/7 をいつでもインストールできます。

A. Windows のインストール

一部のオペレーティングシステムにはすでに Intel® SATA RAID/AHCI ドライバが含まれているため、Windows のインストールプロセス中に RAID/AHCI ドライバを個別にインストールする必要はありません。オペレーティングシステムのインストール後、「Xpress Install」を使用してマザーボードドライバディスクから必要なドライバをすべてインストールして、システムパフォーマンスと互換性を確認するようにお勧めします。インストールされているオペレーティングシステムが、OS インストールプロセス中に追加 SATA RAID/AHCI ドライバの提供を要求する場合は、以下のステップを参照してください。

ステップ 1:

ドライバディスクの BootDrv にある IRST フォルダをお使いの USBメモリドライブにコピーします。

ステップ 2:

Windows セットアップディスクからブートし、標準の OS インストールステップを実施します。画面でドライバを読み込んでくださいという画面が表示されたら、Browseを選択します。

ステップ 3:

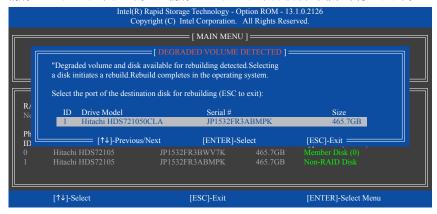
USBメモリドライブを挿入し、ドライバの場所を閲覧します。ドライバの場所は次の通りです。 Windows 32 ビット:\iRST\32Bit Windows 64 ビット:\iRST\64Bit

ステップ 4:

図 1 に示した画面が表示されたら、Intel(R) Desktop/Workstation/Server Express Chipset SATA RAID Controller を選択し、Next をクリックしてドライバをロードし OS のインストールを続行します。

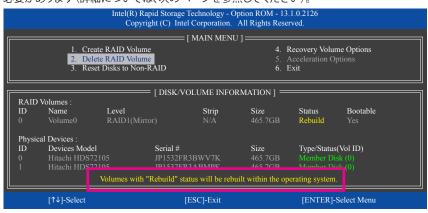
図 1

B. アレイを再構築する


再構築は、アレイの他のドライブからハードドライブにデータを復元するプロセスです。再構築は、RAID 1、RAID 5、RAID 10 アレイに対してのみ、適用されます。以下の手順では、新しいドライブを追加して故障したドライブを交換し RAID 1 アレイに再構築するものとします。(注:新しいドライブは古いドライブより大きな容量にする必要があります。)

コンピュータの電源をオフにし、故障したハードドライブを新しいものと交換します。コンピュータを再起動します。

・ 自動再構築を有効にする


ステップ 1:

「Press <Ctrl-> to enter Configuration Utility」というメッセージが表示されたら、<Ctrl> + <> を押して RAID 構成ユーティリティに入ります。RAID 構成ユーティリティに入ると、次の画面が表示されます。

ステップ 2:

新しいハードドライブを選択して再構築するアレイに追加し、<Enter> を押します。オペレーティングシステムに入ると、自動再構築が実行されますという次の画面が表示されます。この段階で自動再構築を有効にしないと、オペレーティングシステムでアレイを手動で再構築する必要があります(詳細については、次のページを参照してください)。

・ オペレーティングシステムで再構築を実行する

オペレーティングシステムに入っている間に、チップセットドライバがマザーボードドライバディスクからインストールされていることを確認します。デスクトップから Intel® Rapid Storage Technology ユーティリティを起動します。

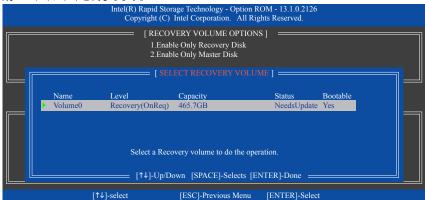
ステップ 1:

Manageメニューに移動し、Manage Volume でRebuild to another disk をクリックします。

ステップ 2:

新しいドライブを選択してRAIDをリビルドし、Rebuild をクリックします。

画面左のStatus 項目にリビルド進捗状況 が表示されます。


ステップ 3: RAID 1ボリュームを再構築した後、Status にNormalとして表示されます。

・ マスタドライブを以前の状態に復元する(リカバリボリュームの場合のみ)

要求に応じて更新するモードで2台のハードドライブをリカバリボリュームに設定すると、必要に応じてマスタドライブのデータを最後のバックアップ状態に復元できます。たとえば、マスタドライブがウイルスを検出すると、リカバリドライブのデータをマスタドライブに復元することができます。

ステップ 1:

Intel® RAID構成ユーティシティのMAIN MENU で4. Recovery Volume Option を選択します。 RECOVERY VOLUMES OPTIONS メニューで、Enable Only Recovery Disk を選択してオペレーティングシステムのリカバリドライブを表示します。オンスクリーンの指示に従って完了し、RAID構成ユーティシティを終了します。

ステップ 2:

Intel® Rapid Storage Technology ユーティリティの Manage メニューに移動し、Manage Volume で Recover data をクリックします。

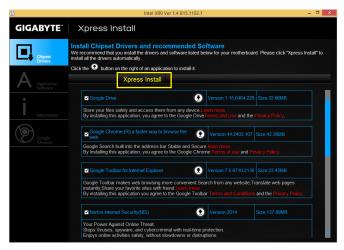
画面左のStatus 項目にリビルド進捗状況 が表示されます。

ステップ 3:

Yes をクリックして、データの復元を開始します。

ステップ 4:

リカバリボリュームが完了した後、Status に Normal として表示されます。


第4章 付録

ドライバのインストール

- ドライバをインストールする前に、まずオペレーティングシステムをインストールします。(以下の指示は、例として Windows 8.1 オペレーティングシステムを使用します。)
- ・ オペレーティングシステムをインストールした後、マザーボードのドライバディスクを 光学ドライブに挿入します。画面右上隅のメッセージ「このディスクの操作を選択す るにはタップしてください」をクリックし、「Run.exe の実行」を選択します。(またはマイ コンピュータで光学ドライブをダブルクリックし、Run.exe プログラムを実行します。)

「Xpress Install」はシステムを自動的にスキャンし、インストールに推奨されるすべてのドライバをリストアップします。 Xpress Install ボタンをクリックすると、「Xpress Install」が選択されたすべてのドライバをインストールします。 または、矢印 ▼ アイコンをクリックすると、必要なドライバを個別にインストールします。

🚽 ソフトウェアについては、GIGABYTEのウェブサイトにアクセスしてください。

- 79 -

規制声明

規制に関する注意

この文書は、当社の書面による許可なしにコピーできません、また内容を第三者への開示や不正な目的で使用することはできず、違反した場合は起訴されることになります。当社はここに記載されている情報は印刷時にすべての点で正確であるとします。しかしこのテキスト内の誤りまたは脱落に対してGIGABYTEは一切の責任を負いません。また本文書の情報は予告なく変更することがありますが、GIGABYTE社による変更の確約ではありません。

環境を守ることに対する当社の約束

高効率パフォーマンスだけでなく、すべてのGIGABYTEマザーボードはRoHS (電気電子機器に関する特定有害物質の制限)とWEEE (廃電気電子機器)環境指令、およびほとんどの主な世界的安全要件を満たしています。環境中に有害物質が解放されることを防ぎ、私たちの天然資源を最大限に活用するために、GIGABYTEではあなたの「耐用年数を経た」製品のほとんどの素材を責任を持ってリサイクルまたは再使用するための情報を次のように提供します。

RoHS(危険物質の制限)指令声明

GIGABYTE製品は有害物質(Cd、Pb、Hg、Cr+6、PBDE、PBB)を追加する意図はなく、そのような物質を避けています。部分とコンポーネントRoHS要件を満たすように慎重に選択されています。さらに、GIGABYTEは国際的に禁止された有毒化学薬品を使用しない製品を開発するための努力を続けています。

WEEE(廃電気電子機器)指令声明

GIGABYTEは2002/96/EC WEEE(廃電気電子機器)の指令から解釈されるように国の法律を満たしています。WEEE指令は電気電子デバイスとそのコンポーネントの取り扱い、回収、リサイクル、廃棄を指定します。指令に基づき、中古機器はマークされ、分別回収され、適切に廃棄される必要があります。

WEEE記号声明

以下に示した記号が製品にあるいは梱包に記載されている場合、この製品を他の廃棄物と一緒に廃棄してはいけません。代わりに、デバイスを処理、回収、リサイクル、廃棄手続きを行うために廃棄物回収センターに持ち込む必要があります。廃棄時に廃機器を分別回収またはリサイクルすることにより、天然資源が保全され、人間の健康と環境を保護するやり方でリサイクルされることが保証されます。リサイクルのために

廃機器を持ち込むことのできる場所の詳細については、最寄りの地方自治体事務所、家庭でみ 廃棄サービス、また製品の購入店に環境に優しい安全なリサイクルの詳細をお尋ねください。

- 電気電子機器の耐用年数が過ぎたら、最寄りのまたは地域の回収管理事務所に「戻し」リサイクルしてください。
- 耐用年数を過ぎた製品のリサイクルや再利用についてさらに詳しいことをお知りになりたい場合、製品のユーザーマニュアルに記載の連絡先にお問い合わせください。できる限りお客様のお力になれるように努めさせていただきます。

最後に、本製品の省エネ機能を理解して使用し、また他の環境に優しい習慣を身につけて、本製品購入したときの梱包の内装と外装(運送用コンテナを含む)をリサイクルし、使用済みバッテリーを適切に廃棄またはリサイクルすることをお勧めします。お客様のご支援により、当社は電気電子機器を製造するために必要な天然資源の量を減らし、「耐用年数の過ぎた」製品の廃棄のための埋め立てごみ処理地の使用を最小限に抑え、潜在的な有害物質を環境に解放せず適切に廃棄することで、生活の質の向上に貢献いたします。

連絡先

• GIGA-BYTE TECHNOLOGY CO., LTD.

アドレス: No.6, Baogiang Rd., Xindian Dist.,

New Taipei City 231, Taiwan

TEL:+886-2-8912-4000

FAX:+886-2-8912-4005

技術および非技術。サポート(販売/マーケティング)・

http://esupport.gigabyte.com

WEBアドレス(英語): http://www.gigabyte.com

WEBアドレス(中国語): http://www.gigabyte.tw
• G.B.T. INC.- U.S.A.

TEL:+1-626-854-9338

FAX:+1-626-854-9326

技術サポート:Support: http://esupport.gigabyte.com

保証情報: http://rma.gigabyte.us

Webアドレス: http://www.gigabyte.us

• G.B.T. INC (USA) - メキシコ

Tel:+1-626-854-9338 x 215 (Soporte de habla hispano)

FAX:+1-626-854-9326

Correo: soporte@gigabyte-usa.com 技術サポート:http://rma.gigabyte.us

Webアドレス: http://latam.giga-byte.com

• Giga-Byte SINGAPORE PTE. LTD.- シンガポール

WEBアドレス: http://www.gigabyte.sg

・**タイ** WEBアドレス: http://th.giga-byte.com

・ベトナム

WEBアドレス: http://www.gigabyte.vn

• NINGBO G.B.T. TECH. TRADING CO., LTD.- 中国

WEBアドレス: http://www.gigabyte.cn

⊢海

TEL:+86-21-63400912

FAX:+86-21-63400682

北京

TEL:+86-10-62102838

FAX:+86-10-62102848

武漢

正法 TEL:+86-27-87685981

FAX:+86-27-87579461

広州

TEL:+86-20-87540700

FAX:+86-20-87544306

风都

TEL:+86-28-85483135

FAX:+86-28-85256822

西安

TEL:+86-29-85531943

FAX:+86-29-85510930

瀋陽

TEL:+86-24-83992342

FAX:+86-24-83992102

・ GIGABYTE TECHNOLOGY (INDIA) LIMITED - インド

WEBアドレス: http://www.gigabyte.in

・ サウジアラビア

WEBアドレス: http://www.gigabyte.com.sa

• Gigabyte Technology Pty. Ltd. - オーストラリア

WEBアドレス: http://www.gigabyte.com.au

• G.B.T. TECHNOLOGY TRADING GMBH - ドイツ

WEBアドレス: http://www.gigabyte.de

G.B.T. TECH. CO., LTD.- U.K.

WEBアドレス: http://www.giga-byte.co.uk

• Giga-Byte Technology B.V. - オランダ

WEBアドレス: http://www.giga-byte.nl

• GIGABYTE TECHNOLOGY FRANCE - フランス

WEBアドレス: http://www.gigabyte.fr

スウェーデン

WEBアドレス: http://www.gigabyte.se

・イタリア WEBアドレス: http://www.giga-byte.it

・スペイン

WEBアドレス: http://www.giga-byte.es

・ギリシャ

WEBアドレス: http://www.gigabyte.com.gr

チェコ共和国

WEBアドレス: http://www.gigabyte.cz

・ハンガリー

WEBアドレス: http://www.giga-byte.hu

・トルコ WEBアドレス: http://www.gigabyte.com.tr

・ロシア

WEBアドレス: http://www.gigabyte.ru

・ポーランド

WEBアドレス: http://www.gigabyte.pl

・ウクライナ

WEBアドレス: http://www.gigabyte.ua ・ルーマニア

WEBアドレス: http://www.gigabyte.com.ro

・セルビア

WEBアドレス: http://www.gigabyte.co.rs

・カザフスタン

WEBアドレス: http://www.giga-byte.kz

GIGABYTE eSupport

技術的または技術的でない (販売/マーケティング) 質問を送信するには: http://esupport.gigabyte.com

