

Rapid Start Technology

Driver Interface Specification

November 2011

Revision 0.70

2 Driver Interface Specification

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT

AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY

WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL

PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,

OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR

DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the

absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future

definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The

information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained

by calling 1-800-548-4725, or go to: http://www.intel.com/#/en_US_01

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011, Intel Corporation. All rights reserved.

http://www.intel.com/#/en_US_01

Driver Interface Specification 3

Contents

1 Introduction .. 5

1.1 Terminology ... 5
1.2 Reference Documents .. 5

2 Driver Interface ... 6

2.1 Device Interface GUID ... 6
2.2 Driver IOCTL Interface .. 6

2.2.1 IOCTL_IFFS_GFFS ... 7
2.2.2 IOCTL_IFFS_SFFS .. 7
2.2.3 IOCTL_IFFS_GFTV ... 7
2.2.4 IOCTL_IFFS_SFTV ... 8

3 Appendix A ... 9

Figures

Figure 1. IFFS_GFFS_DATA Structure ... 7
Figure 2. IFFS_GFFS_DATA Structure ... 8

Tables

Table 1. Supported IOCTL’s ... 6

4 Driver Interface Specification

Revision History

Document
Number

Revision
Number

Description Revision Date

N/A 0.70 Added information regarding requirement to release driver

handle as soon as possible

November 2010

N/A 0.52 Changed product name to Rapid Start Technology June 2010

N/A 0.51 Change GUID_AOAC_INTERFACE to GUID_IFFS_INTERFACE May 2010

N/A 0.5 Initial release May 2010

§

Introduction

Driver Interface Specification 5

1 Introduction

This document specifies the user mode interface with the Intel® Rapid Start
Technology driver.

The Intel® Rapid Start Technology driver is a Windows Driver Model (WDM) driver.

The driver is designed to allow user-mode access the ACPI methods exposed by the
Intel® Rapid Start Technology virtual ACPI device. The Intel® Rapid Start
Technology virtual device is specified by the ACPI _HID "INT3392".

Communication with the driver from user mode is performed through I/O Control

Codes (IOCTL’s) using the “DeviceIoControl” Windows API function. The definition of
the supported IOCTL’s is contained herein.

The details of processing within the driver are outside the scope of this document.

1.1 Terminology

Term Description

ACPI Advanced Configuration and Power Interface

API Application Programming Interface

GUID Globally Unique IDentifier

IOCTL I/O Control Code used to send control commands to drivers

WDM Windows Driver Model

1.2 Reference Documents

Document Document
No./Location

Advance Configuration and Power Interface Specification (Latest rev.)

§

Driver Interface

6 Driver Interface Specification

2 Driver Interface

2.1 Device Interface GUID

The driver exports a device interface for access by user-mode applications. The

interface is identified by the system using the following device interface class GUID:

static const GUID GUID_IFFS_INTERFACE =

{0xe7ab5e0c,0x11e8,0x4802,{0xbf,0x90,0x31,0x80,0x61,0xb5,0x7d,0x1}};

The GUID_IFFS_INTERFACE GUID may be used to obtain a handle to the device for
communication through the supported IOCTL’s. (See Appendix A for reference code.)

Warning: Only one handle to the driver may be open by system software at any given time.
There is a low probability that multiple pieces of software will attempt to access the
driver at the same time. If a handle is held by one piece of software, any attempts by

other software to obtain a handle will fail. Software must take this possibility into

account when accessing the driver. The following recommendations are made:

1. Software should release the handle to the driver immediately after use and

not hold the handle indefinitely.
2. Software should retry obtaining the handle multiple times with a short delay

between attempts. (200 attempts with a 1ms sleep time is recommended.)

This requirement is due to the characteristics of the ACPI device object exposed by
the ACPI driver.

2.2 Driver IOCTL Interface

The IOCTL’s supported by the driver interface are listed in Table 1.

Table 1. Supported IOCTL’s

IOCTL NAME USAGE IOCTL DECLARATION

IOCTL_IFFS_GFFS Returns the function status from the
GFFS ACPI method

CTL_CODE(0x8086, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

IOCTL_IFFS_SFFS Sets the function status through the
SFFS ACPI method

CTL_CODE(0x8086, 0x801, METHOD_BUFFERED, FILE_ANY_ACCESS)

IOCTL_IFFS_GFTV Returns the “Enter After” timer value
from the GFTV ACPI method

CTL_CODE(0x8086, 0x802, METHOD_BUFFERED, FILE_ANY_ACCESS)

IOCTL_IFFS_SFTV Sets the “Enter After” timer value
through the SFFS ACPI method

CTL_CODE(0x8086, 0x803, METHOD_BUFFERED, FILE_ANY_ACCESS)

Driver Interface

Driver Interface Specification 7

2.2.1 IOCTL_IFFS_GFFS

The IOCTL_IFFS_GFFS IOCTL returns the current Intel® Rapid Start Technology
status by evaluating the GFFS ACPI method of the Intel® Rapid Start Technology ACPI
device.

Data is returned from the IOCTL using the IFFS_GFFS_DATA structure shown in Figure

1. The caller must provide a sufficient buffer for the data returned.

The driver will return an appropriate error status if the IOCTL is unsuccessful.

Figure 1. IFFS_GFFS_DATA Structure

typedef union _IFFS_GFFS_DATA {

 struct {

 ULONG entryOnRtcWakeEnable:1;

 ULONG entryOnCritBattWakeEnable:1;

 } u;

 ULONG asUlong;

} IFFS_GFFS_DATA, *PIFFS_GFFS_DATA;

entryOnRtcWakeEnable Intel® Rapid Start Technology entry on RTC Wake:

 0 = Disabled
 1 = Enabled
entryOnCritBattWakeEnable Intel® Rapid Start Technology entry on Critical

Battery Wake:
 0 = Disabled
 1 = Enabled

2.2.2 IOCTL_IFFS_SFFS

The IOCTL_IFFS_SFFS IOCTL is used to set the current Intel® Rapid Start Technology

status by calling the SFFS ACPI method of the Intel® Rapid Start Technology ACPI

device.

The state is set through the IOCTL using the IFFS_GFFS_DATA structure shown in

Figure 1.

The driver will return an appropriate error status if the IOCTL is unsuccessful.

2.2.3 IOCTL_IFFS_GFTV

The IOCTL_IFFS_GFTV IOCTL returns the BIOS Intel® Rapid Start Technology “Entry

After” timer setting by evaluating the GFTV ACPI method of the Intel® Rapid Start
Technology ACPI device.

Data is returned from the IOCTL using the IFFS_GFTV_DATA structure shown in Figure

2. The caller must provide a sufficient buffer for the data returned.

The driver will return an appropriate error status if the IOCTL is unsuccessful.

Driver Interface

8 Driver Interface Specification

Figure 2. IFFS_GFFS_DATA Structure

typedef struct _IFFS_GFTV_DATA {

 ULONG timerValue;

} IFFS_GFTV_DATA, *PIFFS_GFTV_DATA;

timerValue Intel® Rapid Start Technology timer value in minutes

2.2.4 IOCTL_IFFS_SFTV

The IOCTL_IFFS_SFTV IOCTL is used to set the Intel® Rapid Start Technology timeout
value by calling the SFTV ACPI method of the Intel® Rapid Start Technology ACPI

device.

The state is set through the IOCTL using the IFFS_GFTV_DATA structure shown in
Figure 2.

The driver will return an appropriate error status if the IOCTL is unsuccessful.

Appendix A

Driver Interface Specification 9

3 Appendix A

The following code may be used to obtain a device path to the Intel® Rapid Start
Technology driver. The path is required to send IOCTL’s to the driver using the
DeviceIoControl API function.

The “Setupapi.lib” library must be linked to the program.

The function returns TRUE on success, and FALSE otherwise. If successful, the path to
interface is returned by pointer.

NOTE: The code provided is one possible methodology which may be used to obtain
the device path from the device interface GUILD. Other solutions are possible and
some changes may be required; dependent upon the development environment used.

#include <setupapi.h>

BOOL GetInterfaceAlias(

 GUID *pGuid,

 CString* pAliasString

)

{

 BOOL status = FALSE;

 BOOL bRet;

 HDEVINFO hDevInfo = INVALID_HANDLE_VALUE;

 ULONG detailSize = 0;

 SP_DEVICE_INTERFACE_DATA deviceInterfaceData;

 PSP_DEVICE_INTERFACE_DETAIL_DATA pDeviceInterfaceDetailData = NULL;

 //

 // Get a device information set of the devices supporting the

 //required interface

 //

 hDevInfo = SetupDiGetClassDevs(pGuid,

 NULL,

 NULL,

 DIGCF_DEVICEINTERFACE | DIGCF_PRESENT);

 if (hDevInfo == INVALID_HANDLE_VALUE) {

 goto exit;

 }

 //

 // Get the first interface from the set

 //

 deviceInterfaceData.cbSize = sizeof(deviceInterfaceData);

 bRet = SetupDiEnumDeviceInterfaces(hDevInfo,

 NULL,

 pGuid,

 0, // Just get first instance

 &deviceInterfaceData);

 if (!bRet) {

 goto exit;

Appendix A

10 Driver Interface Specification

 }

 //

 // Determine the buffer size needed for the path

 //

 bRet = SetupDiGetDeviceInterfaceDetail(hDevInfo,

 &deviceInterfaceData,

 NULL,

 0,

 &detailSize,

 NULL);

 if (!bRet) {

 if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {

 goto exit;

 }

 }

 pDeviceInterfaceDetailData = (PSP_DEVICE_INTERFACE_DETAIL_DATA) new

char[detailSize];

 if(pDeviceInterfaceDetailData == NULL) {

 goto exit;

 }

 pDeviceInterfaceDetailData->cbSize =

sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

 bRet = SetupDiGetDeviceInterfaceDetail(hDevInfo,

 &deviceInterfaceData,

 pDeviceInterfaceDetailData,

 detailSize,

 NULL,

 NULL);

 if (!bRet) {

 goto exit;

 }

 pAliasString->SetString(pDeviceInterfaceDetailData->DevicePath);

 status = TRUE;

 exit:

 if(pDeviceInterfaceDetailData != NULL) {

 delete [] pDeviceInterfaceDetailData;

 }

 return status;

}

§

